Citation: Dao-Lin Wang, Yong-Yang Wang, Xiao-Ce Shi, Jian Ma. An efficient synthesis of novel benzo[b]pyrido[3',2':4,5] thieno[2,3-e][1,6]naphthy-ridine-8-ones[J]. Chinese Chemical Letters, ;2015, 26(9): 1109-1112. doi: 10.1016/j.cclet.2015.05.009 shu

An efficient synthesis of novel benzo[b]pyrido[3',2':4,5] thieno[2,3-e][1,6]naphthy-ridine-8-ones

  • Corresponding author: Dao-Lin Wang, 
  • Received Date: 5 March 2015
    Available Online: 27 April 2015

  • An efficient method for the synthesis of novel benzo[b]pyrido[3',2':4,5] thieno[2,3-e][1,6] naphthyridine-8-one derivatives has been developed using a Pictet-Spengler reaction between 4-(3-aminothieno[2,3-b]pyridin-2-yl)quinoline-2-ones, which could be obtained from the alkylation of 4-bromomethylquinoline-2-ones with 3-cyanopyridine-2-thione followed by a Thorpe-Ziegler isomerization, and aromatic aldehydes under p-TsOH as catalysis in good yields.
  • 加载中
    1. [1]

      [1] (a) J. Clardy, C. Walsh, Lessons from nature molecules, Nature 432(2004) 829-837;

    2. [2]

      (b) J. Kato, Y. Ito, R. Ijuin, et al., Novel strategy for synthesis of substituted benzimidazo[1,2-a]quinolines, Org. Lett. 15(2013) 3794-3797;

    3. [3]

      (c) L.Z. Gao, Y.S. Xie, T. Li, et al., Synthesis and antibacterial activity of novel[1,2,4] triazolo[3,4-h] [1,8] naphthyridine-7-carboxylic acid derivatives, Chin. Chem. Lett. 26(2015) 149-151.

    4. [4]

      [2] H. Nakamura, J. Kobayashi, Y. Ohizumi, Isolation and structure of aaptamine a novel heteroaromatic substance possessing a-blocking activity from the sea sponge Aaptos, Tetrahedron Lett. 23(1982) 5555-5558.

    5. [5]

      [3] J.J. Bowling, H.K. Pennaka, K. Ivey, et al., Antiviral and anticancer optimization studies of the DNA-binding marine natural product aaptamine, Chem. Biol. Drug Des. 71(2008) 205-215.

    6. [6]

      [4] W. Gul, N.L. Hammond, M. Yousaf, et al., Modification at the C9 position of the marine natural product isoaaptamine and the impact on HIV-1, mycobacterial, and tumor cell activity, Bioorg. Med. Chem. 14(2006) 8495-8505.

    7. [7]

      [5] G.R. Pettit, H. Hoffmann, J. McNulty, et al., Antineoplastic agents 380. Isolation and X-ray crystal structure determination of isoaaptamine from the Republic of Singapore Hymeniacidon sp. and conversion to the phosphate prodrug hystatin 1, J. Nat. Prod. 67(2004) 506-509.

    8. [8]

      [6] L.W. Deady, M.L. Rogers, L. Zhuang, et al., Synthesis and cytotoxic activity of carboxamide derivatives of benzo[b] [1,6] naphthyridin-(5H)ones, Bioorg. Med. Chem. 13(2005) 1341-1355.

    9. [9]

      [7] (a) E.L. Larghi, M.L. Bohn, T.S. Kaufman, Aaptamine and related products. Their isolation, chemical syntheses, and biological activity, Tetrahedron 65(2009) 4257-4282;

    10. [10]

      (b) Y. Takahashi, T. Kubota, A. Shibazaki, et al., Nakijinamines C-E, new heteroaromatic alkaloids from the sponge Suberites species, Org. Lett. 13(2011) 3016-3019;

    11. [11]

      (c) L. Caixia, T. Xuli, L. Pinglin, et al., Suberitine A-D, four new cytotoxic dimeric aaptamine alkaloids from the marine sponge Aaptos suberitoides, Org. Lett. 14(2012) 1994-1997.

    12. [12]

      [8] C. Mukhopadhyay, P. Das, R.J. Butcher, An expeditious and efficient synthesis of highly functionalized[1,6] naphthyridines under catalyst-free conditions in aqueous medium, Org. Lett. 13(2011) 4664-4667.

    13. [13]

      [9] P.W. Phuan, M.C. Kozlowski, Convenient preparation of naphthyridines from halopyridines:sequential Heck coupling and cyclization, Tetrahedron Lett. 42(2001) 3963-3965.

    14. [14]

      [10] (a) A. Chandra, B. Singh, S. Upadhyay, et al., Copper-free Sonogashira coupling of 2-chloroquinolines with phenyl acetylene and quick annulation to benzo[b] [1,6]-naphthyridine derivatives in aqueous ammonia, Tetrahedron 64(2008) 11680-11685;

    15. [15]

      (b) R.M. Singh, R. Kumar, N. Sharma, et al., Palladium-catalyzed one-pot synthesis of benzo[b] [1,6] naphthyridines via Sonogashira coupling and annulation reactions from 2-chloroquinoline-3-carbonitriles, Tetrahedron 69(2013) 9443-9450.

    16. [16]

      [11] M. Piltan, I. Yavari, L. Moradi, Tandem synthesis of functionalized hexaalkyl benzoisoquinolinopyrrolonaphthyridine-hexacarboxylate, via isoquinoline based multi-component reaction, Chin. Chem. Lett. 24(2013) 979-983.

    17. [17]

      [12] V.P. Litvinov, V.V. Dotsenko, S.G. Krivokolysko, The chemistry of thienopyridine, Adv. Heterocycl. Chem. 93(2007) 117-178.

    18. [18]

      [13] (a) C.G. Dave, P.R. Shah, A.B. Shah, K.C. Dave, et al., Synthesis and biological activity of pyrido[3',2':4,5] thieno[3,2-d]pyrimidines, J. Indian Chem. Soc. 66(1989) 48-50;

    19. [19]

      (b) V.L. Ivanov, V.A. Artemov, L.A. Rodinovskaya, et al., New approaches to the synthesis of functionally substituted pyrido[3',2':4,5] thieno[3,2-b]pyridines and the structure of the product obtained, Chem. Heterocycl. Compd. 32(1996) 105-111;

    20. [20]

      (c) J.M. Quintela, C. Peinador, C. Veiga, et al., Synthesis and antiallergic activity of pyridothienopyrimidines, Bioorg. Med. Chem. Lett. 6(1998) 1911-1925;

    21. [21]

      (d) L.A. Rodinovskaya, A.M. Shestopalov, A.V. Gromova, et al., One-pot synthesis of diverse 4-di(tri)fluoromethyl-3-cyanopyri dine-2(1H)-thiones and their utilities in the cascade synthesis of annulated heterocycles, J.Comb.Chem.10(2008) 313-322;

    22. [22]

      (e) A.K. Elansary, A.A.Moneer, H.H. Kadry, et al., Synthesis and anticancer activity of some novel fused pyridine ring system, Arch. Pharm. Res. 35(2012) 1909-1917.

    23. [23]

      [14] A. Pictet, T.T. Spengler, Über die bildung von isochinolin-derivaten durch einwirkung von methylal auf phenyl-thylamin, phenyl-alanin und tyrosin, Ber. Dtsch. Chem. Ges. 44(1911) 2030-2036.

    24. [24]

      [15] (a) S.W. Youn, The Pictet-Spengler reaction:efficient carbon-carbon bond forming reaction in heterocyclic synthesis, Org. Prep. Proced. Int. 38(2006) 505-591;

    25. [25]

      (b) B. Kundu, P.K. Agarwal, S.K. Sharma, et al., Pictet-Spengler reaction revisited:engineering of tetherd biheterocycles into annulated polyheterocycles, Curr. Org. Synth. 9(2012) 357-376.

    26. [26]

      [16] (a) D.L. Wang, S.F. Li, W. Li, et al., An efficient synthesis of 3-(guaiazulene-1-yl)succinimides by addition of guaiazulene to maleimides, Chin. Chem. Lett. 22(2011) 789-792;

    27. [27]

      (b) D.L. Wang, Q.T. Cui, S.S. Feng, et al., A new synthesis approach to azuleno[2,1-b]pyridine-4(1H)-ones, Heterocyles 85(2012) 697-704;

    28. [28]

      (c) D.L. Wang, Z. Dong, Q.T. Cui, et al., Synthesis of some pyrazole-fused pyrido[3,2-a]azulenes, Heterocycles 87(2013) 2343-2350;

    29. [29]

      (d) D.L. Wang, Z. Dong, Z. Liu, et al., Efficient one-pot synthesis of 1,4-dihydropyridino[3,2-c]coumarins, Chin. J. Org. Chem. 34(2014) 783-787;

    30. [30]

      (e) D.L. Wang, J.Y. Wu, D. Wu, et al., An efficient synthesis of 1-oxo-1,2-dihydrobenzo[b] [1,6] naphthyridine-4-carbonitriles, Chin. Chem. Lett. 25(2014) 1555-1558;

    31. [31]

      (f) D.L. Wang, D. Wu, W. Zhao, et al., An efficient synthesis of benzo[b]benzofurano[2,3-e]-[1,6] naphthyridine-8-ones, Chin. Chem. Lett. 26(2015) 251-254.

    32. [32]

      [17] (a) D.J. Cook, R.E. Bowen, E. Daniels, Bromination studies of alkyl-substituted 2-pyridones and 2-quinolones, J. Org. Chem. 26(1961) 4949-4955;

    33. [33]

      (b) L.J. Zhang, H. Zhang, Y.H. Yang, et al., Synthesis of diethyl ribamipide carboxylate, J. Wuhan. Inst. Tech. 31(2009) 23-25.

    34. [34]

      [18] Physical and spectral (IR, NMR, Anal.) data:. 5a:Mp > 300℃. IR (KBr, cm-1):ν 1675(C=O). 1H NMR (400 MHz, CF3CO2D):δ 3.78(s, 3H), 7.55-7.62(m, 7H), 7.79-7.80(m, 2H), 8.81-8.83(m, 2H), 8.98-8.90(m, 1H). 13C NMR (100MHz, CF3CO2D):δ 30.4, 115.1, 117.5, 117.6, 120.7, 122.8, 124.6, 127.5, 127.8, 127.9, 128.1, 128.4, 131.9, 132.1, 138.5, 139.9, 143.4, 150.3, 151.1, 160.1, 160.9, 162.4. Anal. Calcd. for C24H15N3OS:C 73.26, H 3.84, N 10.68, S 8.15. Found:C 73.38, H 3.97, N 10.84, S 8.34; 5b:Mp > 300℃. IR (KBr, cm-1):ν 1685(C=O). 1H NMR (400 MHz, CF3CO2D):δ 2.45(s, 3H), 3.73(s, 3H), 7.32(d, J=7.6 Hz, 2H), 7.51(d, J=7.6 Hz, 2H), 7.52-7.56(m, 3H), 7.74(t, J=8.0 Hz, 1H), 8.80-8.82(m, 2H), 8.89(d, J=8.0 Hz, 1H). 13C NMR (100 MHz, CF3CO2D):δ 29.7, 30.6, 114.5, 115.9, 117.6, 120.0, 121.5, 122.2, 123.6, 126.8, 127.2, 127.7, 128.2, 129.1, 129.4, 131.4, 131.7, 133.3, 138.6, 149.8, 151.4, 160.1, 161.1. Anal. Calcd. for C25H17N3OS:C 73.69, H 4.21, N 10.31, S 7.87. Found:C 73.86, H 4.43, N 10.40, S 7.96; 5c:Mp> 300℃. IR (KBr, cm-1):ν 1676(C=O). 1H NMR (400 MHz, CF3CO2D):δ 3.91(s, 3H), 4.01(s, 3H), 7.23(d, J=8.0 Hz, 1H), 7.33-7.36(m, 2H), 7.61(t, J=8.0 Hz, 1H), 7.86-7.92(m, 2H), 8.16(t, J=8.0Hz, 1H), 8.34-8.35(m, 1H), 8.96(d, J=9.6 Hz, 1H), 9.37-9.38(m, 1H), 9.88(d, J=8.0 Hz, 1H). 13C NMR (100 MHz, CF3CO2D):δ 31.3, 54.6, 111.2, 113.2, 114.4, 115.0, 116.0, 116.8, 117.8, 118.6, 112.0, 123.7, 124.9, 126.6, 128.1, 129.4, 131.3, 133.3, 137.6, 141.4, 141.8, 145.4, 146.2, 153.8, 158.4. Anal. Calcd. for C25H17N3O2S:C 70.90, H 4.05, N 9.92, S 7.57. Found:C 71.04, H 4.14, N 10.08, S 7.64; 5d:Mp> 300℃. IR (KBr, cm-1):ν 1685(C=O). 1H NMR (400MHz, CF3CO2D):δ 4.22(s, 3H), 4.32(s, 3H), 7.51-7.53(m, 2H), 7.94-7.95(m, 2H), 8.16-8.21(m, 2H), 8.45-8.46(m, 1H), 8.67-8.68(m, 1H), 9.21-9.22(m 1H), 9.66-9.67(m, 1H), 10.21-10.22(m, 1H). 13C NMR (100MHz, CF3CO2D):δ 31.3, 55.2, 114.9, 115.3, 115.6, 117.2, 124.1, 124.9, 126.2, 127.0, 128.2, 129.1, 130.6, 137.6, 137.9, 141.7, 142.3, 146.5, 146.7, 153.9, 159.2, 159.6, 162.8. Anal. Calcd. for C25H17N3O2S:C 70.90, H 4.05, N 9.92, S 7.57. Found:C 70.98, H 4.17, N 10.05, S 7.68; 5e:Mp > 300℃. IR (KBr, cm-1):ν 1686(C=O). 1H NMR (400 MHz, CF3CO2D):δ 3.92(s, 3H), 7.57-7.62(m, 4H), 7.91-7.93(m, 2H), 8.17-8.19(m, 1H), 8.36-8.37(m, 1H), 8.97-8.99(m, 1H), 9.38-9.39(m, 1H), 9.88-9.89(m, 1H). 13C NMR (100MHz, CF3CO2D):δ 31.1, 115.2, 116.6, 118.5, 125.6, 126.6, 127.3, 128.2, 128.5, 128.8, 129.4, 129.6, 129.9, 130.0, 137.7, 141.4, 145.3, 146.2, 147.4, 153.8, 158.5, 158.8. Anal. Calcd. for C24H14ClN3OS:C 67.36, H 3.30, N 9.82, S 7.49. Found:C 67.52, H 3.46, N 9.96, S 7.58; 5f:Mp > 300℃. IR (KBr, cm-1):ν 1675(C=O). 1HNMR (400MHz, CF3CO2D):δ 3.89(s, 3H), 7.29-7.31(m, 2H), 7.62-7.64(m, 2H), 7.86-7.90(m, 2H), 8.14-8.15(m, 1H), 8.34-8.36(m, 1H), 8.93(d, J=7.6Hz, 1H), 9.35-9.36(m, 1H), 9.87(d, J=7.6 Hz, 1H). 13C NMR (100 MHz, CF3CO2D):δ 30.5, 114.7, 114.9, 115.2, 117.4, 117.6, 120.8, 122.9, 127.5, 128.0, 130.3, 130.4, 132.0, 138.7, 139.9, 150.4, 151.2, 159.8, 160.1, 161.4, 162.1, 163.9. Anal. Calcd. for C24H14FN3OS:C 70.06, H 3.43, N 10.21, S 7.79. Found:C 70.18, H 3.59, N 10.38, S 7.85; 5g:Mp> 300℃. IR (KBr, cm-1):ν 1677(C=O). 1H NMR (400MHz, CF3CO2D):δ 3.72(s, 3H), 4.08(s, 3H), 7.35-7.37(m, 1H), 7.45-7.52(m, 4H), 7.60-7.61(m, 3H), 8.32(s, 1H), 8.84-8.86(m, 1H), 8.93(d, J=7.6 Hz,1H). 13CNMR(100MHz, CF3CO2D):δ 30.6, 55.9, 110.1, 116.4, 117.8, 118.1, 120.0, 120.7, 124.4, 128.3, 128.4, 128.6, 132.2, 134.3, 137.7, 138.3, 140.5, 150.1, 150.9, 155.2, 159.7, 161.2, 162.0. Anal. Calcd. for C25H17N3O2S:C 70.90, H 4.05, N 9.92, S 7.57. Found:C 71.04, H 4.18, N 10.05, S 7.69; 5h:Mp > 300℃. IR (KBr, cm-1):ν 1686(C=O). 1H NMR (400 MHz, CDCl3):δ 2.45(s, 3H), 3.75(s, 3H), 4.08(s, 3H), 7.33(d, J=8.0 Hz, 2H), 7.45-7.47(m, 3H), 7.52(d, J=9.2 Hz, 1H), 7.76-7.78(m, 1H), 8.26(s, 1H), 8.95-8.96(m, 1H), 9.19(d, J=7.6 Hz, 1H). 13CNMR (100MHz, CF3CO2D):δ 21.6, 30.6, 55.9, 110.0, 116.3, 117.7, 118.1, 120.0, 120.7, 124.3, 128.2, 128.4, 128.6, 132.0, 134.2, 137.7, 138.2, 140.5, 150.2, 151.0, 155.2, 159.7, 161.1, 162.2. Anal. Calcd. for C26H19N3O2S:C 71.38, H 4.38, N 9.60, S 7.33. Found:C 71.47, H 4.53, N 9.74, S 7.48; 5i:Mp > 300℃. IR (KBr, cm-1):ν 1688(C=O). 1H NMR (400 MHz, CF3CO2D):δ 3.75(s, 3H), 3.89(s, 3H), 4.06(s, 3H), 7.03-7.05(m, 2H), 7.33-7.35(m, 1H), 7.46-7.47(m, 1H), 7.59-7.61(m, 3H), 8.29(s, 1H), 8.33-8.45(m, 1H), 8.94-8.96(m, 1H). 13C NMR (100 MHz, CF3CO2D):δ 30.5, 55.3, 55.9, 110.1, 113.3, 114.0, 116.4, 117.8, 118.1, 120.0, 120.8, 121.1, 124.6, 128.1, 128.7, 132.1, 134.3, 138.1, 144.7, 150.1, 151.1, 155.2, 159.1, 159.5, 160.8, 162.1. Anal. Calcd. for C26H19N3O3S:C 68.86, H 4.22, N 9.27, S 7.07. Found:C 68.98, H 4.37, N 9.41, S 7.16; 5j:Mp > 300℃. IR (KBr, cm-1):ν 1680(C=O). 1H NMR (400MHz, CDCl3):δ 3.73(s, 3H), 3.90(s, 3H), 4.09(s, 3H), 7.49-7.55(m, 5H),7.59-7.61(m, 2H), 7.75(t, J=8.0 Hz, 1H), 8.81-8.83(m, 2H), 8.87(d, J=8.0 Hz, 1H). 13C NMR (100 MHz, CF3CO2D):δ 30.7, 55.3, 56.0, 110.1, 113.3, 116.4, 117.6, 118.2, 120.0, 120.8, 124.2, 128.2, 130.2, 132.1, 134.2, 135.6, 138.4, 150.1, 151.0, 155.2, 159.6, 159.8, 160.7, 162.1. Anal. Calcd. for C26H19N3O3S:C 68.86, H 4.22, N 9.27, S 7.07. Found:C 69.02, H 4.35, N 9.43, S 7.19; 5k:Mp > 300℃. IR (KBr, cm-1):ν 1677(C=O). 1H NMR (400 MHz, CF3CO2D):δ 3.74(s, 3H), 4.07(s, 3H), 7.37(d, J=8.8 Hz, 1H), 7.47-7.49(m, 3H),7.55-7.57(m, 3H), 8.30(s, 1H), 8.85-8.86(m, 1H), 8.90-8.92(m, 1H). 13CNMR(100 MHz, CF3CO2D):δ 30.6, 56.0, 110.2, 116.5, 117.3, 118.1, 120.0, 120.9, 124.9, 128.0, 128.2, 129.9, 132.3, 134.0, 134.2, 138.4, 141.7, 151.1, 150.9, 155.4, 159.6, 159.9, 161.9. Anal. Calcd. for C25H16ClN3O2S:C 65.57, H 3.52, N 9.18, S 7.00. Found:C 65.72, H 3.64, N 9.31, S 7.13; 5l:Mp > 300℃. IR (KBr, cm-1):ν 1685(C=O). 1H NMR (400 MHz, CF3CO2D):δ 3.74(s, 3H), 4.06(s, 3H), 7.20(m, 2H), 7.37-7.39(m, 1H), 7.47-7.49(m, 1H), 8.60-8.62(m, 3H), 8.30(s, 1H), 8.85-8.86(m, 1H), 7.96-7.98(m, 1H). 13C NMR (100 MHz, CF3CO2D):δ 30.6, 56.0, 110.1, 114.7, 114.9, 116.5, 118.1, 120.2, 120.9, 124.7, 128.1, 130.3, 130.4, 132.1, 134.2, 136.9, 138.4, 151.2, 155.3, 156.3, 159.7, 159.9, 162.2. Anal. Calcd. for C25H16FN3O2S:C 68.01, H 3.65, N 9.52, S 7.26. Found:C 68.15, H 3.78, N 9.69, S 7.42.

    35. [35]

      [19] (a) A.M. Shestopalov, A.E. Fedorov, P.A. Belyakov, Study of the orientation of the Thorpe-Ziegler reaction, Chem. Heterocycl. Comp. 36(2000) 609-610;

    36. [36]

      (b) V. Gefenas,Ž. Stankevičūte, A. Malinauskas, Novel method for the synthesis of furo[2,3-d]pyrimidines by cyclization of 4-(phenacyloxy)pyrimidine-5-carbonitriles, Chem. Heterocycl. Comp. 46(2010) 372-374;

    37. [37]

      (c) H.F. Zhang, Z.Q. Ye, G. Zhao, Enantioselective synthesis of functionalized fluorinated dihydropyrano[2,3-c]pyrazoles catalyzed by a simple bifunctional diaminocyclohexane-thiourea, Chin. Chem. Lett. 25(2014) 535-540.

    38. [38]

      [20] P.K. Agarwal, M. Saifuddin, B. Kundu, Regioselective intramolecular electrophilic substitution reactions involving π-deficient pyridine substrates:a new entry to pyridoquinazolines and benzo[h] [1,6] naphthyridines, Tetrahedron 66(2010) 862-870.

  • 加载中
    1. [1]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    2. [2]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    3. [3]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    4. [4]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    5. [5]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    6. [6]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    7. [7]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    8. [8]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    9. [9]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    11. [11]

      Zheng ZhangLei ShiBin WangJingyuan QuXiaoling WangTao WangQitao JiangWuhong XueXiaohong Xu . Epitaxial growth of full-vdW α-In2Se3/MoS2 heterostructures for all-in-one sensing and memory-computing artificial visual system. Chinese Chemical Letters, 2025, 36(3): 109687-. doi: 10.1016/j.cclet.2024.109687

    12. [12]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    13. [13]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    14. [14]

      Lanfang WangJiangnan LvYujia LiYanqing HaoWenjiao LiuHui ZhangXiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597

    15. [15]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    16. [16]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    17. [17]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    18. [18]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    19. [19]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

Metrics
  • PDF Downloads(0)
  • Abstract views(742)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return