Citation: Da-Zhong Shen, Ting-Ting Cai, Xi-Lei Zhu, Xiao-Long Ma, Ling-Qiang Kong, Qi Kang. Monitoring iodine adsorption onto zeolitic-imidazolate framework-8 film using a separated-electrode piezoelectric sensor[J]. Chinese Chemical Letters, ;2015, 26(8): 1022-1025. doi: 10.1016/j.cclet.2015.04.029 shu

Monitoring iodine adsorption onto zeolitic-imidazolate framework-8 film using a separated-electrode piezoelectric sensor

  • Corresponding author: Qi Kang, 
  • Received Date: 5 January 2015
    Available Online: 3 April 2015

    Fund Project: The authors gratefully acknowledge financial support by National Natural Science Foundation of China (Nos. 21175084, 21275091) (Nos. 21175084, 21275091) Ministry of Education (No. KLCBTCMR2001-01) (Hunan Normal University)Research Fund for the Doctoral Program of Higher Education of China (No. 20113704110003). (No. KLCBTCMR2001-01)

  • In this work, a separated-electrode piezoelectric sensor (SEPS), constructed by a naked quartz crystal mounted between two electrodes, is reported for applications in a corrosive gaseous phase. The response of SEPS was measured by an impedance analysis method. It was shown that SEPS has an excellent frequency stability because its quality factor is in the order of 105. The SEPS can be operated even with the electrode gap in air larger than 1 cm. Compared with a conventional quartz crystal microbalance, the resonant frequency of the SEPS is independent of the mass change in the electrode. The SEPS was applied to monitor the adsorption of iodine on quartz surface and zeolitic-imidazolate framework-8 (ZIF-8) film as well as in the transfer of iodine between two ZIF-8 films. The SEPS offers the advantages of easy preparation, corrosion-resistant and convenience in combination with mass and optical measurements.
  • 加载中
    1. [1]

      [1] K.A. Marx, Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface, Biomacromolecules 4 (2003) 1099-1120.

    2. [2]

      [2] S.Z. Yao, Piezoelectric Chemistry and Biosensors, Chemical Industry Press, Beijing, 2006.

    3. [3]

      [3] G.N.M. Ferreira, A.C. da-Silva, B. Tomé , Acoustic wave biosensors: physical models and biological applications of quartz crystal microbalance, Trends Biotechnol. 27 (2009) 689-697.

    4. [4]

      [4] G. Sauerbrey, The use of quartz oscillators for weighting thin layers and for microweighting, Z. Phys. 155 (1959) 206-222.

    5. [5]

      [5] P. Horcajada, R. Gref, T. Baati, et al., Metal-organic frameworks in biomedicine, Chem. Rev. 112 (2012) 1232-1268.

    6. [6]

      [6] J.R. Li, J. Sculley, H.C. Zhou, Metal-organic frameworks for separations, Chem. Rev. 112 (2012) 869-932.

    7. [7]

      [7] K. Sumida, D.L. Rogow, J.A. Mason, et al., Carbon dioxide capture in metal-organic frameworks, Chem. Rev. 112 (2012) 724-781.

    8. [8]

      [8] J.P. Lei, R.C. Qian, P.H. Ling, L. Cui, H.X. Ju, Design and sensing applications of metal-organic framework composites, Trends Anal. Chem. 58 (2014) 71-78.

    9. [9]

      [9] J.B. DeCoste, G.W. Peterson, Metal-organic frameworks for air purification of toxic chemicals, Chem. Rev. 114 (2014) 5695-5727.

    10. [10]

      [10] L. Kang, S.X. Sun, L.B. Kong, J.W. Lang, Y.C. Luo, Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors, Chin. Chem. Lett. 25 (2014) 957-961.

    11. [11]

      [11] W. Wang, Y. Yuan, F.X. Sun, G.S. Zhu, Targeted synthesis of novel porous aromatic frameworks with selective separation of CO2/CH4 and CO2/N2, Chin. Chem. Lett. 25 (2014) 1407-1410.

    12. [12]

      [12] E. Biemmi, A. Darga, N. Stock, T. Bein, Direct growth of Cu3(BTC)2(H2O)3· xH2O thin films on modified QCM-gold electrodes—water sorption isotherms, Microporous Mesoporous Mater. 114 (2008) 380-386.

    13. [13]

      [13] C.Y. Huang, M. Song, Z.Y. Gu, H.F. Wang, X.P. Yan, Probing the adsorption characteristic of metal-organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance, Environ. Sci. Technol. 45 (2011) 4490-4496.

    14. [14]

      [14] A. Bé tard, S. Wannapaiboon, R.A. Fischer, Assessing the adsorption selectivity of linker functionalized, moisture-stable metal-organic framework thin films by means of an environment-controlled quartz crystal microbalance, Chem. Commun. 48 (2012) 10493-10495.

    15. [15]

      [15] A. Venkatasubramanian, M. Navaei, K.R. Bagnall, et al., Gas adsorption characteristics of metal-organic frameworks via quartz crystal microbalance techniques, J. Phys. Chem. C 116 (2012) 15313-15321.

    16. [16]

      [16] P. Davydovskaya, A. Ranft, B.V. Lotsch, R. Pohle, Analyte detection with Cu-BTC metal-organic framework thin films by means of mass-sensitive and workfunction-based readout, Anal. Chem. 86 (2014) 6948-6958.

    17. [17]

      [17] S.N. Wijenayake, N.P. Panapitiya, S.H. Versteeg, et al., Surface cross-linking of ZIF-8/polyimide mixed matrix membranes (MMMs) for gas separation, Ind. Eng. Chem. Res. 52 (2013) 6991-7001.

    18. [18]

      [18] D.F. Sava, M.A. Rodriguez, K.W. Chapman, et al., Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8, J. Am. Chem. Soc. 133 (2011) 12398-12401.

    19. [19]

      [19] J.T. Hughes, D.F. Sava, T.M. Nenoff, A. Navrotsky, Thermochemical evidence for strong iodine chemisorption by ZIF-8, J. Am. Chem. Soc. 135 (2013) 16256-16259.

  • 加载中
    1. [1]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    2. [2]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    3. [3]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    4. [4]

      Hui YangGuangxun ZhangYueyao SunHuijie ZhouHuan Pang . Bimetallic zeolitic imidazolate framework derived hollow layered double hydroxide with tailorable interlayer spacing for nickel-zinc batteries. Chinese Chemical Letters, 2025, 36(6): 110016-. doi: 10.1016/j.cclet.2024.110016

    5. [5]

      Ming ZhongXue GuoYang LiuKun ZhaoHui PengSuijun LiuXiaobo Zhang . Molybdenum-glycerate@zeolitic imidazolate framework spheres derived hierarchical nitrogen-doped carbon-encapsulated bimetallic selenides heterostructures for improved lithium-ion storage. Chinese Chemical Letters, 2025, 36(5): 109873-. doi: 10.1016/j.cclet.2024.109873

    6. [6]

      Le HanZhou YuanBohan LiYuchi ZhangLin YangYan Xu . Highly-stable cesium lead halide perovskite CsPbBr3/CsPb2Br5 heteronanocrystals in zeolitic imidazolate framework-8 for antibiotic photodegradation. Chinese Chemical Letters, 2025, 36(6): 110349-. doi: 10.1016/j.cclet.2024.110349

    7. [7]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

    8. [8]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    9. [9]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    10. [10]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    11. [11]

      Li LiLin-Lin ZhangYansha GaoLu-Ying DuanWuying YangXigen HuangYanping HongJiaxin HongLin YuanLimin Lu . Target self-calibration ratiometric fluorescent sensor based on facile-synthesized europium metal-organic framework for multi-color visual detection of levofloxacin. Chinese Chemical Letters, 2025, 36(7): 110436-. doi: 10.1016/j.cclet.2024.110436

    12. [12]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    13. [13]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    14. [14]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    15. [15]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    16. [16]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    17. [17]

      Dongying FuLin PanYanli MaYue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621

    18. [18]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    19. [19]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    20. [20]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

Metrics
  • PDF Downloads(0)
  • Abstract views(878)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return