Citation: Xian-He Huang, Meng-Meng Zhang, Xin-Wei Dou, Xuan Lu, Yu-Jun Qin, Pu Zhang, Jia-Hua Shi, Zhi-Xin Guo. Strengthened graphene oxide/diazoresin multilayer composites from layer-by-layer assembly and cross-linking[J]. Chinese Chemical Letters, ;2015, 26(9): 1155-1157. doi: 10.1016/j.cclet.2015.04.005 shu

Strengthened graphene oxide/diazoresin multilayer composites from layer-by-layer assembly and cross-linking

  • Corresponding author: Yu-Jun Qin,  Jia-Hua Shi, 
  • Received Date: 7 February 2015
    Available Online: 26 March 2015

    Fund Project:

  • The layer-by-layer assembly of graphene oxide and diazoresin is carried out via the electrostatic and hydrogen bond interactions on planar substrates and colloidal templates. The successful planar and spherical growth of multilayer could be investigated by UV-vis spectrophotometry and scanning electron microscopy, respectively. Subsequent UV irradiation or heating would convert the ionic bonds and hydrogen bonds to covalent bands, which significantly improves the stability of the multilayer composite against solvent etching. For the cross-linked core-shell composites, the template cores could be removed by dissolution and hollow microspheres are obtained.
  • 加载中
    1. [1]

      [1] A.K. Geim, Graphene:status and prospects, Science 324(2009) 1530-1534.

    2. [2]

      [2] C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene:the new twodimensional nanomaterial, Angew. Chem. Int. Ed. 48(2009) 7752-7777.

    3. [3]

      [3] M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon:a review of graphene, Chem. Rev. 110(2010) 132-145.

    4. [4]

      [4] D.Q. Wu, F. Zhang, H.W. Liang, X.L. Feng, Nanocomposites and macroscopic materials:assembly of chemically modified graphene sheets, Chem. Soc. Rev. 41(2012) 6160-6177.

    5. [5]

      [5] M. Yang, Y. Hou, N.A. Kotov, Graphene-based multilayers:critical evaluation of materials assembly techniques, Nano Today 7(2012) 430-447.

    6. [6]

      [6] X. Zhang, H. Chen, H.Y. Zhang, Layer-by-layer assembly:from conventional to unconventional methods, Chem. Commun. (2007) 1395-1405.

    7. [7]

      [7] J. Hong, J.Y. Han, H. Yoon, et al., Carbon-based layer-by-layer nanostructures:from films to hollow capsules, Nanoscale 3(2011) 4515-4531.

    8. [8]

      [8] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotech. 3(2008) 101-105.

    9. [9]

      [9] T. Cassagneau, F. Gué rin, J.H. Fendler, Preparation and characterization of ultrathin films layer-by-layer self-assembled from graphite oxide nanoplatelets and polymers, Langmuir 16(2000) 7318-7324.

    10. [10]

      [10] H.B. Yao, L.H. Wu, C.H. Cui, H.Y. Fang, S.H. Yu, Direct fabrication of photoconductive patterns on LBL assembled graphene oxide/PDDA/titania hybrid films by photothermal and photocatalytic reduction, J. Mater. Chem. 20(2010) 5190-5195.

    11. [11]

      [11] J.F. Shen, Y.Z. Hu, C. Li, et al., Layer-by-layer self-assembly of graphene nanoplatelets, Langmuir 25(2009) 6122-6128.

    12. [12]

      [12] Z.Y. Xiong, T.H. Gu, X.G. Wang, Self-assembled multilayer films of sulfonated graphene and polystyrene-based diazonium salt as photo-cross-linkable supercapacitor electrodes, Langmuir 30(2014) 522-532.

    13. [13]

      [13] J. Hong, K. Char, B.S. Kim, Hollow capsules of reduced graphene oxide nanosheets assembled on a sacrificial colloidal particle, J. Phys. Chem. Lett. 1(2010) 3442-3445.

    14. [14]

      [14] M.X. Tang, Y.J. Qin, Y.Y. Wang, Z.X. Guo, Hollow carbon nanotube microspheres and hemimicrospheres, J. Phys. Chem. C 113(2009) 1666-1671.

    15. [15]

      [15] J.W. Cui, Y.Q. Liu, J.C. Hao, Multiwalled carbon-nanotube-embedded microcapsules and their electrochemical behavior, J. Phys. Chem. C 113(2009) 3967-3972.

    16. [16]

      [16] A.L. Xiong, X. Lu, Y.M. Ma, et al., Cross-linked multilayer composite films and microcapsules embedded carbon nanotubes, Mater. Lett. 105(2013) 132-135.

    17. [17]

      [17] A.A. Mamedov, N.A. Kotov, M. Prato, et al., Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites, Nat. Mater. 1(2002) 190-194.

    18. [18]

      [18] H. Luo, J.Y. Chen, G.B. Luo, Y.N. Chen, W.X. Cao, Self-assembly films from diazoresin and carboxy-containing polyelectrolytes, J. Mater. Chem. 11(2001) 419-422.

    19. [19]

      [19] S.H. Qin, D.Q. Qin, W.T. Ford, J.E. Herrera, D.E. Resasco, Grafting of poly(4-vinylpyridine) to single-walled carbon nanotubes and assembly of multilayer films, Macromolecules 37(2004) 9963-9967.

    20. [20]

      [20] J.H. Shi, Y.J. Qin, H.X. Luo, et al., Covalently attached multilayer self-assemblies of single-walled carbon nanotubols and diazoresins, Nanotechnology 18(2007) 365704.

    21. [21]

      [21] B. Wang, X.L. Li, T.F. Qiu, et al., High volumetric capacity silicon-based lithium battery anodes by nanoscale system engineering, Nano Lett. 13(2013) 5578-5584.

  • 加载中
    1. [1]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    2. [2]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    3. [3]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    4. [4]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    5. [5]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    6. [6]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    7. [7]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    8. [8]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    9. [9]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    10. [10]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    11. [11]

      Lili ZhangHui GaoGong ZhangYuning DongKai HuangZifan PangTuo WangChunlei PeiPeng ZhangJinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204

    12. [12]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    13. [13]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    14. [14]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    15. [15]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    16. [16]

      Shuo ZhangHaitao LiaoZhi-Qun LiuChong YanJia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284

    17. [17]

      Yuhuan MengLong ZhangLequan WangJunming KangHongbin Lu . 20 nm-ultra-thin fluorosiloxane interphase layer enables dendrite-free, fast-charging, and flexible aqueous zinc metal batteries. Chinese Chemical Letters, 2024, 35(12): 110025-. doi: 10.1016/j.cclet.2024.110025

    18. [18]

      Haowen ShangYujie YangBingjie XueYikai WangZhiyi SuWenlong LiuYouzhi WuXinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511

    19. [19]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    20. [20]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

Metrics
  • PDF Downloads(0)
  • Abstract views(759)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return