Citation: Yi-Si Feng, Jian Hao, Wei-Wei Liu, Yun-Jin Yao, Yue Cheng, Hua-Jian Xu. Characterization and reactivity of γ-Al2O3 supported Pd-Ni bimetallic nanocatalysts for selective hydrogenation of cyclopentadiene[J]. Chinese Chemical Letters, ;2015, 26(6): 709-713. doi: 10.1016/j.cclet.2015.03.006 shu

Characterization and reactivity of γ-Al2O3 supported Pd-Ni bimetallic nanocatalysts for selective hydrogenation of cyclopentadiene

  • Corresponding author: Hua-Jian Xu, 
  • Received Date: 26 December 2014
    Available Online: 9 February 2015

    Fund Project: We are grateful to the financial assistance from the National Natural Science Foundation of China (Nos. 21272050, 21371044, 21472033) (Nos. 21272050, 21371044, 21472033)the Program for New Century Excellent Talents in University of the Chinese Ministry of Education (No. NCET-11-0627). (No. NCET-11-0627)

  • Several γ-Al2O3 supported Pd-Ni bimetallic nanocatalysts (Pd-Ni (x:y)/Al2O3; where x and y represent the mass ratio of Pd and Ni, respectively) were prepared by the impregnation method and used for selective hydrogenation of cyclopentadiene to cyclopentene. The Pd-Ni/Al2O3 samples were confirmed to generate Pd-Ni bimetallic nanoparticles by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The catalytic activity was assessed in view of the effects of different mass ratios of Pd and Ni, temperature, pressure, etc. Among all the samples, the Pd-Ni (1:1)/Al2O3 (PN-1:1) catalyst showed extremely high catalytic ability. The conversion of cyclopentadiene and selectivity for cyclopentene can be simultaneously more than 90%.
  • 加载中
    1. [1]

      [1] C.Q. Liu, Y. Xu, S.J. Liao, D.R. Yu, Selective hydrogenation of cyclopentadiene in mono-and bimetallic catalytic hollow-fiber reactors, J. Mol. Catal. A: Chem. 157 (2000) 253-259.

    2. [2]

      [2] H.R. Gao, S.J. Liao, Y. Xu, et al., Selective hydrogenation of cyclopentadiene in a catalytic cellulose acetate hollow-fiber reactor, Catal. Lett. 27 (1994) 297-303.

    3. [3]

      [3] H.R. Gao, Y. Xu, S.J. Liao, et al., Catalytic polymeric hollow-fiber reactors for the selective hydrogenation of conjugated dines, J. Membr. Sci. 106 (1995) 213-219.

    4. [4]

      [4] A.F. Plate, V.I. Stanko, Preparation of cyclopentene from cyclopentadiene, Bull. Acad. Sci. USSR Div. Chem. Sci. 5 (1956) 1173-1174.

    5. [5]

      [5] V.M. Gryaznov, M.M. Ermilova, L.D. Gogua, N.V. Orekhova, L.S. Morozova, Hydrogenation of cyclopentadiene in the presence of isoprene and 1,3-pentadiene on a Pd-Ru membrane catalyst, Bull. Acad. Sci. USSR Div. Chem. Sci. 30 (1981) 672-675.

    6. [6]

      [6] L.K. Freidlin, B.D. Polkovnikov, Hydrogenation of cyclopentadiene in binary mixtures with unsaturated hydrocarbons on palladium and platinum blacks, Bull. Acad. Sci. USSR Div. Chem. Sci. 6 (1957) 555-559.

    7. [7]

      [7] N. Itoh, W.C. Xu, A.M. Sathet, Capability of permeate hydrogen through palladiumbased membranes for acetylene hydrogenation, Ind. Eng. Chem. Res. 32 (1993) 2614-2619.

    8. [8]

      [8] K. Eiichi, Palladium/ceramic membranes for selective hydrogen permeation and their application to membrane reaction, Catal. Today 25 (1995) 333-337.

    9. [9]

      [9] C.Q. Liu, Y. Xu, S.J. Liao, D.Y. Yu, Mono-and bimetallic catalytic hollow-fiber reactors for the selective hydrogenation of butadiene in 1-butene, Appl. Catal. A: Gen. 172 (1998) 23-29.

    10. [10]

      [10] W.J. Wang, M.H. Qiao, H.X. Li, J.F. Deng, Amorphous NiP/SiO2 aerogel: its preparation, its high thermal stability and its activity during the selective hydrogenation of cyclopentadiene to cyclopentene, Appl. Catal. A: Gen. 166 (1998) L243-L247.

    11. [11]

      [11] S. Yoshida, H. Yamashita, T. Funabiki, T. Yonezawa, Catalysis by amorphous metal alloys. Part 1—hydrogenation of olefins over amorphous Ni-P and Ni-B alloys, J. Chem. Soc. Faraday Trans. 180 (1984) 1435-1446.

    12. [12]

      [12] C.L. Fernando, G.Q. Santiago, A. Claudia, M.A. Keane, Gas phase hydrogenation of p-chloronitrobenzene over Pd-Ni/Al2O3, Appl. Catal. A: Gen. 473 (2014) 41-50.

    13. [13]

      [13] N.S. Babu, N. Lingaiah, P.S.S. Prasad, Characterization and reactivity of Al2O3 supported Pd-Ni bimetallic catalysts for hydrodechlorination of chlorobenzene, Appl. Catal. B: Environ. 111-112 (2012) 306-309.

    14. [14]

      [14] J. Zhao, L. Ma, X.L. Xu, F. Feng, X.N. Li, Synthesis of carbon-supported Pd/SnO2 catalyst for highly selective hydrogenation of 2,4-difluoronitrobenzene, Chin. Chem. Lett. 25 (2014) 1137-1140.

    15. [15]

      [15] H. Yang, D. Shi, S.F. Ji, D.N. Zhang, X.F. Liu, Nanosized Pd assembled on superparamagnetic core-shell microspheres: synthesis, characterization and recyclable catalytic properties for the Heck reaction, Chin. Chem. Lett. 25 (2014) 1265-1270.

    16. [16]

      [16] S.J.S. Basha, P. Vijayan, C. Suresh, D. Santhanaraj, K. Shanthi, Effect of order of impregnation of Mo and Ni on the hydrodenitrogenation activity of NiO-MoO3/AlMCM-41 catalyst, Ind. Eng. Chem. Res. 48 (2009) 2774-2780.

    17. [17]

      [17] A.B. Jaap, V. Tom, R.G.L. Bob, et al., Envisaging the physicochemical processes during the preparation of supported catalysts: Raman microscopy on the impregnation of Mo onto Al2O3 extrudates, J. Am. Chem. Soc. 126 (2004) 14548-14556.

    18. [18]

      [18] Y. Qiu, L. Xin, W.Z. Li, Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte, Langmuir 30 (2014) 7893-7901.

    19. [19]

      [19] X.Q. Pan, Y.B. Zhang, Z.Z. Miao, X.G. Yang, A novel PdNi/Al2O3 catalyst prepared by galvanic deposition for low temperature methane combustion, J. Energy Chem. 22 (2013) 610-616.

    20. [20]

      [20] X.Q. Pan, Y.B. Zhang, B. Zhang, et al., Influence of electronic effect on methane catalytic combustion over PdNi/Al2O3, Chem. Res. Chin. Univ. 29 (2013) 952-955.

    21. [21]

      [21] P. Lu, T. Teranishi, K. Asakura, M. Miyake, N. Toshima, Polymer-protected Ni/Pd bimetallic nano-clusters: preparation, characterization and catalysis for hydrogenation of nitrobenzene, J. Phys. Chem. B 103 (1999) 9673-9682.

    22. [22]

      [22] P.K. Cheekatamarla, A.M. Lane, Efficient bimetallic catalysts for hydrogen generation from diesel fuel, Int. J. Hydrog. Energy 30 (2005) 1277-1285.

    23. [23]

      [23] D. Dissanayake, M.P. Rosynek, K.C.C. Kharas, J.H. Lunsford, Partial oxidation of methane to carbon monoxide and hydrogen over a nickel/alumina catalyst, J. Catal. 132 (1991) 117-127.

  • 加载中
    1. [1]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    2. [2]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    4. [4]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    5. [5]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    6. [6]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    7. [7]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    8. [8]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    9. [9]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    10. [10]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    11. [11]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    12. [12]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    13. [13]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    14. [14]

      Danfeng ZhaoJing LinRushuo LiLiang ChuZhaokun WangXiubing HuangGe Wang . Constructing frustrated Lewis pairs on porous Ce-based metal-organic frameworks with improved dicyclopentadiene hydrogenation activity. Chinese Chemical Letters, 2025, 36(7): 110172-. doi: 10.1016/j.cclet.2024.110172

    15. [15]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    16. [16]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    17. [17]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Hua LiuJian ZhaoQi LiXiang-Yu ZhangZhi-Wei ZhengKun HuangDa-Bin QinBin Zhao . Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones. Chinese Chemical Letters, 2025, 36(6): 110593-. doi: 10.1016/j.cclet.2024.110593

    19. [19]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    20. [20]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

Metrics
  • PDF Downloads(0)
  • Abstract views(835)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return