Citation: Qi Sun, Cheng-Jun Wang, Shan-Shan Gong, Yong-Jian Ai, Hong-Bin Sun. Cp2ZrCl2-catalyzed synthesis of 2-aminovinyl benzimidazoles under microwave conditions[J]. Chinese Chemical Letters, ;2015, 26(3): 297-300. doi: 10.1016/j.cclet.2014.11.014 shu

Cp2ZrCl2-catalyzed synthesis of 2-aminovinyl benzimidazoles under microwave conditions

  • Corresponding author: Qi Sun,  Hong-Bin Sun, 
  • Received Date: 15 August 2014
    Available Online: 13 October 2014

    Fund Project: and Research Funds (Nos. ky2012zy08 and 2013QNBJRC001) from JXSTNU for financial support. (No. 212092)

  • A microwave-assisted general method for the synthesis of 2-aminovinyl benzimidazoles has been developed. Treatment of the 1,2-phenylenediamines and N-arylated/N,N-dialkylated 3-aminoacroleins with bis(cyclopentadienyl)zirconium(IV) dichloride (Cp2ZrCl2) as the catalyst under microwave irradiation for 3-5 min followed by in situ MnO2 oxidation afforded thirteen 2-aminovinyl benzimidazoles in good yields.
  • 
    1. [1]

      [1] (a) P.N. Preston, Synthesis, reactions, and spectroscopic properties of benzimidazoles, Chem. Rev. 74 (1974) 279-314; (b) L.C.R. Carvalho, E. Fernandes, M.M.B. Marques, Developments towards regioselective synthesis of 1,2-disubstituted benzimidazoles, Chem. Eur. J. 17 (2011) 12544-12555.

    2. [2]

      [2] M. Alamgir, D.S.C. Black, N. Kumar, Synthesis, reactivity and biological activity of benzimidazoles, Top. Heterocycl. Chem. 21 (2007) 87-118.

    3. [3]

      [3] Q. Sun, R.Z. Wu, S.T. Cai, et al., Synthesis and biological evaluation of analogues of AKT (protein kinase B) inhibitor-IV, J. Med. Chem. 54 (2011) 1126-1139.

    4. [4]

      [4] J.M. Smith, V. Krchnak, A solid phase traceless synthesis of benzimidazoles with three combinatorial steps, Tetrahedron Lett. 40 (1999) 7633-7636.

    5. [5]

      [5] P.L. Beaulieu, B. Hache, E. von Moos, A practical oxone-mediated, high-throughput, solution-phase synthesis of benzimidazoles from 1,2-phenylenediamines and aldehydes and its application to preparative scale synthesis, Synthesis (2003) 1683-1692.

    6. [6]

      [6] P. Gogoi, D. Konwar, An efficient and one-pot synthesis of imidazolines and benzimidazoles via anaerobic oxidation of carbon-nitrogen bonds in water, Tetrahedron Lett. 47 (2006) 79-82.

    7. [7]

      [7] S.Y. Kim, K.H. Park, Y.K. Chung, Manganese(IV) dioxide-catalyzed synthesis of quinoxalines under microwave irradiation, Chem. Commun. (2005) 1321-1323.

    8. [8]

      [8] J.P. Mayer, G.S. Lewis, C. McGee, et al., Solid-phase synthesis of benzimidazoles, Tetrahedron Lett. 39 (1998) 6655-6658.

    9. [9]

      [9] R.R. Nagawade, D.B. Shinde, BF3 OEt2 promoted solvent-free synthesis of benzimidazole derivatives, Chin. Chem. Lett. 17 (2006) 453-456.

    10. [10]

      [10] M.B. Wallace, J. Feng, Z.Y. Zhang, et al., Structure-based design and synthesis of benzimidazole derivatives as dipeptidyl peptidase IV inhibitors, Bioorg. Med. Chem. Lett. 18 (2008) 2361-2362.

    11. [11]

      [11] L.P. Duan, Q. Li, N.B. Wu, et al., Synthesis of 2,5-disubstitued benzimidazole using SnCl2-catalyzed reduction system at room temperature, Chin. Chem. Lett. 25 (2014) 155-158.

    12. [12]

      [12] (a) Z.H. Zhang, L. Yin, Y.M. Wang, An expeditious synthesis of benzimidazole derivatives catalyzed by Lewis acids, Catal. Commun. 8 (2007) 1126-1131; (b) R.R. Nagawade, D.B. Shinde, Zirconyl(IV) chloride-promoted synthesis of benzimidazole derivatives, Russ. J. Org. Chem. 42 (2006) 453-454.

    13. [13]

      [13] K. Deo, S. Kanwar, A. Pandey, et al., Process for the preparation of N-methyl anilino acrolein, WO 2005090256, Chem. Abstr. 145 (2006) 292712.

    14. [14]

      [14] (a) G. Navarrete-Vázquez, H. Moreno-Diaz, F. Aguirre-Crespo, et al., Design, microwave-assisted synthesis, and spasmolytic activity of 2-(alkyloxyaryl)-1Hbenzimidazole derivatives as constrained stilbene bioisosteres, Bioorg. Med. Chem. Lett. 16 (2006) 4169-4173; (b) R.G. Jacob, L.G. Dutra, C.S. Radatz, et al., Synthesis of 1,2-disubstituted benzimidazoles using SiO2/ZnCl2, Tetrahedron Lett. 50 (2009) 1495-1497.

    1. [1]

      [1] (a) P.N. Preston, Synthesis, reactions, and spectroscopic properties of benzimidazoles, Chem. Rev. 74 (1974) 279-314; (b) L.C.R. Carvalho, E. Fernandes, M.M.B. Marques, Developments towards regioselective synthesis of 1,2-disubstituted benzimidazoles, Chem. Eur. J. 17 (2011) 12544-12555.

    2. [2]

      [2] M. Alamgir, D.S.C. Black, N. Kumar, Synthesis, reactivity and biological activity of benzimidazoles, Top. Heterocycl. Chem. 21 (2007) 87-118.

    3. [3]

      [3] Q. Sun, R.Z. Wu, S.T. Cai, et al., Synthesis and biological evaluation of analogues of AKT (protein kinase B) inhibitor-IV, J. Med. Chem. 54 (2011) 1126-1139.

    4. [4]

      [4] J.M. Smith, V. Krchnak, A solid phase traceless synthesis of benzimidazoles with three combinatorial steps, Tetrahedron Lett. 40 (1999) 7633-7636.

    5. [5]

      [5] P.L. Beaulieu, B. Hache, E. von Moos, A practical oxone-mediated, high-throughput, solution-phase synthesis of benzimidazoles from 1,2-phenylenediamines and aldehydes and its application to preparative scale synthesis, Synthesis (2003) 1683-1692.

    6. [6]

      [6] P. Gogoi, D. Konwar, An efficient and one-pot synthesis of imidazolines and benzimidazoles via anaerobic oxidation of carbon-nitrogen bonds in water, Tetrahedron Lett. 47 (2006) 79-82.

    7. [7]

      [7] S.Y. Kim, K.H. Park, Y.K. Chung, Manganese(IV) dioxide-catalyzed synthesis of quinoxalines under microwave irradiation, Chem. Commun. (2005) 1321-1323.

    8. [8]

      [8] J.P. Mayer, G.S. Lewis, C. McGee, et al., Solid-phase synthesis of benzimidazoles, Tetrahedron Lett. 39 (1998) 6655-6658.

    9. [9]

      [9] R.R. Nagawade, D.B. Shinde, BF3 OEt2 promoted solvent-free synthesis of benzimidazole derivatives, Chin. Chem. Lett. 17 (2006) 453-456.

    10. [10]

      [10] M.B. Wallace, J. Feng, Z.Y. Zhang, et al., Structure-based design and synthesis of benzimidazole derivatives as dipeptidyl peptidase IV inhibitors, Bioorg. Med. Chem. Lett. 18 (2008) 2361-2362.

    11. [11]

      [11] L.P. Duan, Q. Li, N.B. Wu, et al., Synthesis of 2,5-disubstitued benzimidazole using SnCl2-catalyzed reduction system at room temperature, Chin. Chem. Lett. 25 (2014) 155-158.

    12. [12]

      [12] (a) Z.H. Zhang, L. Yin, Y.M. Wang, An expeditious synthesis of benzimidazole derivatives catalyzed by Lewis acids, Catal. Commun. 8 (2007) 1126-1131; (b) R.R. Nagawade, D.B. Shinde, Zirconyl(IV) chloride-promoted synthesis of benzimidazole derivatives, Russ. J. Org. Chem. 42 (2006) 453-454.

    13. [13]

      [13] K. Deo, S. Kanwar, A. Pandey, et al., Process for the preparation of N-methyl anilino acrolein, WO 2005090256, Chem. Abstr. 145 (2006) 292712.

    14. [14]

      [14] (a) G. Navarrete-Vázquez, H. Moreno-Diaz, F. Aguirre-Crespo, et al., Design, microwave-assisted synthesis, and spasmolytic activity of 2-(alkyloxyaryl)-1Hbenzimidazole derivatives as constrained stilbene bioisosteres, Bioorg. Med. Chem. Lett. 16 (2006) 4169-4173; (b) R.G. Jacob, L.G. Dutra, C.S. Radatz, et al., Synthesis of 1,2-disubstituted benzimidazoles using SiO2/ZnCl2, Tetrahedron Lett. 50 (2009) 1495-1497.

  • 加载中
    1. [1]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    2. [2]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    3. [3]

      Chengyao ZhaoJingyuan LiaoYuxiang ZhuYiying ZhangLianjie ZhaiJunrong HuangHengzhi You . Polystyrene-supported phosphoric-acid catalyzed atroposelective construction of axially chiral N-aryl benzimidazoles. Chinese Chemical Letters, 2025, 36(6): 110337-. doi: 10.1016/j.cclet.2024.110337

    4. [4]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    5. [5]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    6. [6]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    7. [7]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    8. [8]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    11. [11]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    12. [12]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    13. [13]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    14. [14]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    15. [15]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    16. [16]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    17. [17]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

    18. [18]

      Xinlin ZhangCheng TangHaitao LiJie SunAijun DuMinghong WuHaijiao Zhang . Robust assembly of TiO2 quantum dots onto Ti3C2Tx for excellent lithium storage capability. Chinese Chemical Letters, 2025, 36(6): 110088-. doi: 10.1016/j.cclet.2024.110088

    19. [19]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    20. [20]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

Metrics
  • PDF Downloads(0)
  • Abstract views(826)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return