Citation: Shin-ichi Kawano, Hong-Yuan Hao, Yuki Hashi, Jin-Ming Lin. Analysis of chloramphenicol in honey by on-line pretreatment liquid chromatography-tandem mass spectrometry[J]. Chinese Chemical Letters, ;2015, 26(1): 36-38. doi: 10.1016/j.cclet.2014.10.026 shu

Analysis of chloramphenicol in honey by on-line pretreatment liquid chromatography-tandem mass spectrometry

  • Corresponding author: Jin-Ming Lin, 
  • Received Date: 14 July 2014
    Available Online: 15 October 2014

    Fund Project: This work was supported by the National Natural Science Foundation of China (No. 21227006) (No. 21227006)the Research Fund for the Doctoral Program of Higher Education (No. 20110002110052). (No. 20110002110052)

  • Chloramphenicol is an antibiotic and one of the potential contaminants in honey. Solid-phase extraction is the key pretreatment procedure for analysis of chloramphenicol in honey. In this work, an on-line pretreatment liquid chromatography-tandem mass spectrometer system for sensitive, reliable and higher throughput analysis was developed. With the methylcellulose-immobilized reversed-phase column, sugars in a honey sample were efficiently removed in 1 min. As a result, the limit of quantitation of chloramphenicol was 20 pg/mL (0.2 mg/kg honey).
    1. [1]

      [1] Commission Decision 2003/181/CE of 13 March 2003, Amending decision 2002/ 657/EC as regards the setting of minimum required performance limits (MRPLs) for certain residues in food of animal origin, Off. J. Eur. Commun. L71 (2003) 17-18.

    2. [2]

      [2] M.I. Lopez, J.S. Pettis, I.B. Smith, P.S. Chu, Multiclass determination and confirmation of antibiotic residues in honey using LC-MS/MS, J. Agric. Food Chem. 56 (2008) 1553-1559.

    3. [3]

      [3] R. Sheridan, B. Policastro, S. Thomas, D. Rice, Analysis and occurrence of 14 sulfonamide antibacterials and chloramphenicol in honey by solid-phase extraction followed by LC/MS/MS analysis, J. Agric. Food Chem. 56 (2008) 3509-3516.

    4. [4]

      [4] É. Alechaga, E. Moyano, M.T. Galceran, Ultra-high performance liquid chromatography- tandem mass spectrometry for the analysis of phenicol drugs and florfenicol- amine in foods, Analyst 137 (2012) 2486-2494.

    5. [5]

      [5] M. Liu, Y. Hashi, F. Pan, et al., Automated on-line liquid chromatography-photodiode array-mass spectrometry method with dilution line for the determination of bisphenol A and 4-octylphenol in serum, J. Chromatogr. A 1133 (2006) 142-148.

    6. [6]

      [6] M. Liu, W. Yan, J.M. Lin, et al., On-line liquid chromatography-mass spectrometry with dilution line to achieve large volume urine injection for the improvement of sensitivity, J. Chromatogr. A 1198/1199 (2008) 87-94.

    7. [7]

      [7] Y. Hashi, J.G. Yao, Y. Li, Y. Liu, J.M. Lin, Development of an on-line sample pretreatment liquid chromatography-mass spectrometry system for the identification of compounds in natural products, Chromatographia 67 (2008) 773-776.

    8. [8]

      [8] W. Yan, Y. Li, L. Zhao, J.M. Lin, Determination of estrogens and bisphenol A in bovine milk by automated on-line C30 solid-phase extraction coupled with highperformance liquid chromatography-mass spectrometry, J. Chromatogr. A 1216 (2009) 7539-7545.

    9. [9]

      [9] X. Lin, H. Li, X. He, et al., Automated on-line solid phase extraction coupled with high performance liquid chromatography-mass spectrometry for determination of deca-bromodiphenyl ether in human serum, J. Sep. Sci. 35 (2012) 2553-2558.

    10. [10]

      [10] E. Yamamoto, K. Murata, Y. Ishihama, N. Asakawa, Methylcellulose-immobilized reversed-phase precolumn for direct analysis of drugs in plasma by HPLC, Anal. Sci. 17 (2001) 1155-1159.

    11. [11]

      [11] S. Kawano, H. Murakita, E. Yamamoto, N. Asakawa, Direct analysis of drugs in plasma by column-switching liquid chromatography-mass spectrometry using a methylcellulose-immobilized reversed-phase pretreatment column, J. Chromatogr. B 792 (2003) 49-54.

    12. [12]

      [12] S. Kawano, Y. Inohana, Y. Hashi, J.M. Lin, Analysis of keto-enol tautomers of curcumin by liquid chromatography/mass spectrometry, Chin. Chem. Lett. 24 (2013) 685-687.

    1. [1]

      [1] Commission Decision 2003/181/CE of 13 March 2003, Amending decision 2002/ 657/EC as regards the setting of minimum required performance limits (MRPLs) for certain residues in food of animal origin, Off. J. Eur. Commun. L71 (2003) 17-18.

    2. [2]

      [2] M.I. Lopez, J.S. Pettis, I.B. Smith, P.S. Chu, Multiclass determination and confirmation of antibiotic residues in honey using LC-MS/MS, J. Agric. Food Chem. 56 (2008) 1553-1559.

    3. [3]

      [3] R. Sheridan, B. Policastro, S. Thomas, D. Rice, Analysis and occurrence of 14 sulfonamide antibacterials and chloramphenicol in honey by solid-phase extraction followed by LC/MS/MS analysis, J. Agric. Food Chem. 56 (2008) 3509-3516.

    4. [4]

      [4] É. Alechaga, E. Moyano, M.T. Galceran, Ultra-high performance liquid chromatography- tandem mass spectrometry for the analysis of phenicol drugs and florfenicol- amine in foods, Analyst 137 (2012) 2486-2494.

    5. [5]

      [5] M. Liu, Y. Hashi, F. Pan, et al., Automated on-line liquid chromatography-photodiode array-mass spectrometry method with dilution line for the determination of bisphenol A and 4-octylphenol in serum, J. Chromatogr. A 1133 (2006) 142-148.

    6. [6]

      [6] M. Liu, W. Yan, J.M. Lin, et al., On-line liquid chromatography-mass spectrometry with dilution line to achieve large volume urine injection for the improvement of sensitivity, J. Chromatogr. A 1198/1199 (2008) 87-94.

    7. [7]

      [7] Y. Hashi, J.G. Yao, Y. Li, Y. Liu, J.M. Lin, Development of an on-line sample pretreatment liquid chromatography-mass spectrometry system for the identification of compounds in natural products, Chromatographia 67 (2008) 773-776.

    8. [8]

      [8] W. Yan, Y. Li, L. Zhao, J.M. Lin, Determination of estrogens and bisphenol A in bovine milk by automated on-line C30 solid-phase extraction coupled with highperformance liquid chromatography-mass spectrometry, J. Chromatogr. A 1216 (2009) 7539-7545.

    9. [9]

      [9] X. Lin, H. Li, X. He, et al., Automated on-line solid phase extraction coupled with high performance liquid chromatography-mass spectrometry for determination of deca-bromodiphenyl ether in human serum, J. Sep. Sci. 35 (2012) 2553-2558.

    10. [10]

      [10] E. Yamamoto, K. Murata, Y. Ishihama, N. Asakawa, Methylcellulose-immobilized reversed-phase precolumn for direct analysis of drugs in plasma by HPLC, Anal. Sci. 17 (2001) 1155-1159.

    11. [11]

      [11] S. Kawano, H. Murakita, E. Yamamoto, N. Asakawa, Direct analysis of drugs in plasma by column-switching liquid chromatography-mass spectrometry using a methylcellulose-immobilized reversed-phase pretreatment column, J. Chromatogr. B 792 (2003) 49-54.

    12. [12]

      [12] S. Kawano, Y. Inohana, Y. Hashi, J.M. Lin, Analysis of keto-enol tautomers of curcumin by liquid chromatography/mass spectrometry, Chin. Chem. Lett. 24 (2013) 685-687.

  • 加载中
    1. [1]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    2. [2]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    3. [3]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    4. [4]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    5. [5]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    6. [6]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    7. [7]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    8. [8]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    9. [9]

      Yanhua ChenXian DingJun ZhouZhaoying WangYunhai BoYing HuQingce ZangJing XuRuiping ZhangJiuming HeFen YangZeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351

    10. [10]

      Haiyan LuJiayue YeYiping WeiHua ZhangKonstantin ChinginVladimir FrankevichHuanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077

    11. [11]

      Keqiang ShiXiujuan HongDongyan XuTao PanHuiwen WangHongru FengCheng GuoYuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079

    12. [12]

      Wen SuSiying LiuQingfu ZhangZhongyan ZhouNa WangLei Yue . Temperature-controlled electrospray ionization tandem mass spectrometry study on protein/small molecule interaction. Chinese Chemical Letters, 2025, 36(5): 110237-. doi: 10.1016/j.cclet.2024.110237

    13. [13]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    14. [14]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    15. [15]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    16. [16]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    17. [17]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    18. [18]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    19. [19]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    20. [20]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

Metrics
  • PDF Downloads(0)
  • Abstract views(861)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return