Citation: Mohammad Javaherian, Foad Kazemi, Masoumeh Ghaemi. A dicationic, podand-like, ionic liquid water system accelerated copper-catalyzed azide-alkyne click reaction[J]. Chinese Chemical Letters, ;2014, 25(12): 1643-1647. doi: 10.1016/j.cclet.2014.09.005 shu

A dicationic, podand-like, ionic liquid water system accelerated copper-catalyzed azide-alkyne click reaction

  • Corresponding author: Mohammad Javaherian, 
  • Received Date: 8 April 2014
    Available Online: 30 July 2014

    Fund Project: Authors thank the Shahid Chamran University of Ahvaz for its financial support (No. 2013). (No. 2013)

  • In this work, an effective, task specific, dicationic, podand-like ionic liquid was synthesized and applied to improve the capability features of click reaction. Moreover, to broaden the scope and decreasing the serious limitations of preparation methods of organic azides, a simple green procedure for the preparation of alkyl azides, the fundamental starting materials in click reactions, from alcohols under solvent-free conditions and microwave irradiation has been reported, for the first time.
    1. [1]

      [1] K. Banert, J. Wutke, T. Rü ffer, H. Lang, The alkyne azide click chemistry as a synthetic tool for the generation of cage-like triazole compounds, Synthesis 16 (2008) 2603-2609.

    2. [2]

      [2] H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry: diverse chemical function from a few good reactions, Angew. Chem. Int. Ed. 40 (2001) 2004.

    3. [3]

      [3] V.V. Rostovtsev, L.G. Green, V.V. Fokin, K.B. Sharpless, Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes, Angew. Chem. Int. Ed. 41 (2002) 2596-2599.

    4. [4]

      [4] Y. Pu, H. Yuan, M. Yang, B. He, Z. Gu, Synthesis of peptide determine with polyhedral oligomeric silsesquioxane cores via click chemistry, Chin. Chem. Lett. 24 (2013) 917-920.

    5. [5]

      [5] G. Tron, T. Pirali, R. Billington, et al., Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes, Med. Res. Rev 28 (2008) 278-308.

    6. [6]

      [6] H. Guo, F. Yang, Z. Jiao, J. Lin, Click synthesis and dye extraction properties of novel thiacalix[4]arene derivatives with triazolyl and hydrogen bonding groups, Chin. Chem. Lett. 24 (2013) 450-452.

    7. [7]

      [7] M. Meldal, C.W. TornØe, Cu-catalyzed azide-alkyne cycloaddition, Chem. Rev. 108 (2008) 2952-3015.

    8. [8]

      [8] A. Marra, A. Vecchi, C. Chiappe, B. Melai, A. Dondoni, Validation of the copper(I)-catalyzed azide-alkyne coupling in ionic liquids. Synthesis of a triazole-linked disaccharide as a case study, J. Org. Chem. 73 (2008) 2458-2461.

    9. [9]

      [9] A.H. Jadhav, H. kim, A mild, efficient, and selective deprotection of tert-butyldimethylsilyl (TBDMS) ethers using dicationic ionic liquid as a catalyst, Tetrahedron Lett. 53 (2012) 5338-5342.

    10. [10]

      [10] M. Messali, Z. Moussa, A.Y. Alzahrani, et al., Synthesis, characterization and the antimicrobial activity of new eco-friendly ionic liquids, Chemosphere 91 (2013) 1627-1634.

    11. [11]

      [11] B.C. Ranu, S. Banerjee, Ionic liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid, [bmIm]OH, in michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles, Org. Lett. 7 (2005) 3049-3052.

    12. [12]

      [12] A. Chinnappan, H. Kim, Environmentally benign catalyst: synthesis, characterization, and properties of pyridinium dicationic molten salts (ionic liquids) and use of application in esterification, Chem. Eng. J. 187 (2012) 283-288.

    13. [13]

      [13] F. Kazemi, A.R. Massah, M. Javaherian, Chemoselective and scalable preparation of alkyl tosylates under solvent-free conditions, Tetrahedron 63 (2007) 5083-5087.

    14. [14]

      [14] Q. Lin, W. Jiang, H. Fu, et al., Hydroformylation of higher olefin in halogen-free ionic liquids catalyzed by water-soluble rhodium-phosphine complexes, Appl. Catal. A: Gen. 328 (2007) 83-87.

    15. [15]

      [15] H.C. Kolb, K.B. Sharpless, The growing impact of click chemistry on drug discovery, DDT 8 (24) (2003) 1128-1137.

    16. [16]

      [16] J.R. Johansson, P. Lincoln, B. Nordé n, N. Kann, Sequential one-pot rutheniumcatalyzed azide-alkyne cycloaddition from primary alkyl halides and sodium azide, J. Org. Chem. 76 (2011) 2355-2359.

    17. [17]

      [17] N. Miyaura, K. Yamada, A. Suzuki, A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides, Tetrahedron Lett. 36 (1979) 3437-3440.

    18. [18]

      [18] D. Milstein, J.K. Stille, A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium, J. Am. Chem. Soc. 100 (1978) 3636-3638.

    19. [19]

      [19] P.L. Golas, K. Matyjaszewski, Marrying click chemistry with polymerization: expanding the scope of polymeric materials, Chem. Soc. Rev. 39 (2010) 1338-1354.

    20. [20]

      [20] S. Chassaing, M. Kumarraja, A.S.S. Sido, P. Pale, Click chemistry in CuI-zeolites: the huisgen [3+2] cycloaddition, J. Org. Lett. 9 (5) (2007) 883-886.

    21. [21]

      [21] S. Chandrasekhar, M. Seenaiah, A. Kumar, et al., Intramolecular copper(I)-catalyzed 1, 3-dipolar cycloaddition of azido-alkynes: synthesis of triazolo-benzoxazepine derivatives and their biological evaluation, Tetrahedron Lett. 52 (2011) 806-808.

    22. [22]

      [22] H. Ankati, E. Biehl, Microwave-assisted benzyne-click chemistry: preparation of 1H-benzo[d][1, 2,3]triazoles, Tetrahedron Lett. 50 (2009) 4677-4682.

    23. [23]

      [23] J.E. Hein, L.B. krasnova, M. Iwasaki, V.V. Fokin, Cu-catalyzed azide-alkyne cycloaddition: preparation of tris((1-benzyl-1H-1,2,3-triazolyl)methyl) amine, Org. Synth. 88 (2012) 238-241.

    24. [24]

      [24] H. Sharghi, R. Khalifeh, M.M. Doroodmand, Copper nanoparticles on charcoal for multicomponent catalytic synthesis of 1,2,3-triazole derivatives from benzyl halides or alkyl halides, terminal alkynes and sodium azide in water as a “green” solvent, Adv. Synth. Catal. 351 (2009) 207-218.

    25. [25]

      [25] J. Raushel, V.V. Fokin, Efficient synthesis of 1-sulfonyl-1,2,3-triazoles, Org. Lett. 12 (21) (2010) 4952-4955.

    26. [26]

      [26] I. Jlalia, C. Beauvineau, S. Beauvié re, et al., Automated synthesis of a 96 productsized library of triazole derivatives using a solid phase supported copper catalyst, Molecules 15 (2010) 3087-3120.

    1. [1]

      [1] K. Banert, J. Wutke, T. Rü ffer, H. Lang, The alkyne azide click chemistry as a synthetic tool for the generation of cage-like triazole compounds, Synthesis 16 (2008) 2603-2609.

    2. [2]

      [2] H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry: diverse chemical function from a few good reactions, Angew. Chem. Int. Ed. 40 (2001) 2004.

    3. [3]

      [3] V.V. Rostovtsev, L.G. Green, V.V. Fokin, K.B. Sharpless, Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes, Angew. Chem. Int. Ed. 41 (2002) 2596-2599.

    4. [4]

      [4] Y. Pu, H. Yuan, M. Yang, B. He, Z. Gu, Synthesis of peptide determine with polyhedral oligomeric silsesquioxane cores via click chemistry, Chin. Chem. Lett. 24 (2013) 917-920.

    5. [5]

      [5] G. Tron, T. Pirali, R. Billington, et al., Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes, Med. Res. Rev 28 (2008) 278-308.

    6. [6]

      [6] H. Guo, F. Yang, Z. Jiao, J. Lin, Click synthesis and dye extraction properties of novel thiacalix[4]arene derivatives with triazolyl and hydrogen bonding groups, Chin. Chem. Lett. 24 (2013) 450-452.

    7. [7]

      [7] M. Meldal, C.W. TornØe, Cu-catalyzed azide-alkyne cycloaddition, Chem. Rev. 108 (2008) 2952-3015.

    8. [8]

      [8] A. Marra, A. Vecchi, C. Chiappe, B. Melai, A. Dondoni, Validation of the copper(I)-catalyzed azide-alkyne coupling in ionic liquids. Synthesis of a triazole-linked disaccharide as a case study, J. Org. Chem. 73 (2008) 2458-2461.

    9. [9]

      [9] A.H. Jadhav, H. kim, A mild, efficient, and selective deprotection of tert-butyldimethylsilyl (TBDMS) ethers using dicationic ionic liquid as a catalyst, Tetrahedron Lett. 53 (2012) 5338-5342.

    10. [10]

      [10] M. Messali, Z. Moussa, A.Y. Alzahrani, et al., Synthesis, characterization and the antimicrobial activity of new eco-friendly ionic liquids, Chemosphere 91 (2013) 1627-1634.

    11. [11]

      [11] B.C. Ranu, S. Banerjee, Ionic liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid, [bmIm]OH, in michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles, Org. Lett. 7 (2005) 3049-3052.

    12. [12]

      [12] A. Chinnappan, H. Kim, Environmentally benign catalyst: synthesis, characterization, and properties of pyridinium dicationic molten salts (ionic liquids) and use of application in esterification, Chem. Eng. J. 187 (2012) 283-288.

    13. [13]

      [13] F. Kazemi, A.R. Massah, M. Javaherian, Chemoselective and scalable preparation of alkyl tosylates under solvent-free conditions, Tetrahedron 63 (2007) 5083-5087.

    14. [14]

      [14] Q. Lin, W. Jiang, H. Fu, et al., Hydroformylation of higher olefin in halogen-free ionic liquids catalyzed by water-soluble rhodium-phosphine complexes, Appl. Catal. A: Gen. 328 (2007) 83-87.

    15. [15]

      [15] H.C. Kolb, K.B. Sharpless, The growing impact of click chemistry on drug discovery, DDT 8 (24) (2003) 1128-1137.

    16. [16]

      [16] J.R. Johansson, P. Lincoln, B. Nordé n, N. Kann, Sequential one-pot rutheniumcatalyzed azide-alkyne cycloaddition from primary alkyl halides and sodium azide, J. Org. Chem. 76 (2011) 2355-2359.

    17. [17]

      [17] N. Miyaura, K. Yamada, A. Suzuki, A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides, Tetrahedron Lett. 36 (1979) 3437-3440.

    18. [18]

      [18] D. Milstein, J.K. Stille, A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium, J. Am. Chem. Soc. 100 (1978) 3636-3638.

    19. [19]

      [19] P.L. Golas, K. Matyjaszewski, Marrying click chemistry with polymerization: expanding the scope of polymeric materials, Chem. Soc. Rev. 39 (2010) 1338-1354.

    20. [20]

      [20] S. Chassaing, M. Kumarraja, A.S.S. Sido, P. Pale, Click chemistry in CuI-zeolites: the huisgen [3+2] cycloaddition, J. Org. Lett. 9 (5) (2007) 883-886.

    21. [21]

      [21] S. Chandrasekhar, M. Seenaiah, A. Kumar, et al., Intramolecular copper(I)-catalyzed 1, 3-dipolar cycloaddition of azido-alkynes: synthesis of triazolo-benzoxazepine derivatives and their biological evaluation, Tetrahedron Lett. 52 (2011) 806-808.

    22. [22]

      [22] H. Ankati, E. Biehl, Microwave-assisted benzyne-click chemistry: preparation of 1H-benzo[d][1, 2,3]triazoles, Tetrahedron Lett. 50 (2009) 4677-4682.

    23. [23]

      [23] J.E. Hein, L.B. krasnova, M. Iwasaki, V.V. Fokin, Cu-catalyzed azide-alkyne cycloaddition: preparation of tris((1-benzyl-1H-1,2,3-triazolyl)methyl) amine, Org. Synth. 88 (2012) 238-241.

    24. [24]

      [24] H. Sharghi, R. Khalifeh, M.M. Doroodmand, Copper nanoparticles on charcoal for multicomponent catalytic synthesis of 1,2,3-triazole derivatives from benzyl halides or alkyl halides, terminal alkynes and sodium azide in water as a “green” solvent, Adv. Synth. Catal. 351 (2009) 207-218.

    25. [25]

      [25] J. Raushel, V.V. Fokin, Efficient synthesis of 1-sulfonyl-1,2,3-triazoles, Org. Lett. 12 (21) (2010) 4952-4955.

    26. [26]

      [26] I. Jlalia, C. Beauvineau, S. Beauvié re, et al., Automated synthesis of a 96 productsized library of triazole derivatives using a solid phase supported copper catalyst, Molecules 15 (2010) 3087-3120.

  • 加载中
    1. [1]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    2. [2]

      Yang LiuMinglu LiJianxun DingXuesi Chen . Glycoengineering-assistant biomineralization for tumor blockade therapy. Chinese Chemical Letters, 2025, 36(5): 110146-. doi: 10.1016/j.cclet.2024.110146

    3. [3]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    4. [4]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    5. [5]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    6. [6]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    7. [7]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    8. [8]

      Yuhao ZhouSiyuan WuXiaozhe RenHongjin LiShu LiTianying Yan . Effects of salt fraction on the Na+ transport in salt-in-ionic liquid electrolytes. Chinese Chemical Letters, 2025, 36(6): 110048-. doi: 10.1016/j.cclet.2024.110048

    9. [9]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    10. [10]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    11. [11]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    12. [12]

      Bowen XuJiahao ChenLulu CuiXinyue LiYuan XueSheng Han . Terpolymers of alkyl methacrylate-trans anethole-1,2,3,6-tetrahydrophthalic anhydride copolymers: A low dosage and high-efficiency cold flow improver for diesel fuel. Chinese Chemical Letters, 2025, 36(5): 110196-. doi: 10.1016/j.cclet.2024.110196

    13. [13]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    14. [14]

      Xingyu MaYi-Xin ChenZi YeChong-Jing Zhang . Isotope-labeled click-free probes to identify protein targets of lysine-targeting covalent reversible molecules. Chinese Chemical Letters, 2025, 36(5): 110203-. doi: 10.1016/j.cclet.2024.110203

    15. [15]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    16. [16]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    17. [17]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    18. [18]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    19. [19]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    20. [20]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

Metrics
  • PDF Downloads(0)
  • Abstract views(741)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return