Citation:
Si-Zhan Wu, Cai-Hong Chen, Wei-De Zhang. Etching graphitic carbon nitride by acid for enhanced photocatalytic activity toward degradation of 4-nitrophenol[J]. Chinese Chemical Letters,
;2014, 25(9): 1247-1251.
doi:
10.1016/j.cclet.2014.05.017
-
Graphitic carbon nitride (g-C3N4) with high photocatalytic activity toward degradation of 4-nitrophenol under visible light irradiation was prepared by HCl etching followed by ammonia neutralization. The structure, morphology, surface area, and photocatalytic properties of the prepared samples were studied. After treatment, the size of the γ-C3N4 decreased from several micrometers to several hundred nanometers, and the specific area of the γ-C3N4 increased from 11.5 m2/g to 115 m2/g. Meanwhile, the photocatalytic activity of γ-C3N4 was significantly improved after treatment toward degradation of 4-nitrophenol under visible light irradiation. The degradation rate constant of the small particle γ-C3N4 is 5.7 times of that of bulk γ-C3N4, which makes it a promising visible light photocatalyst for future applications for water treatment and environmental remediation.
-
Keywords:
- Photocatalyst,
- 4-Nitrophenol,
- Etching,
- g-C3N4
-
-
-
[1]
[1] Y.M. Grushko, Toxic Organic Compounds in Industrial Wastewater: A Handbook, 2nd ed., Khimia, Leningrad, Russian, 1982, pp. 134-136.
-
[2]
[2] Agency for Toxic Substances and Disease Registry U.S. Public Health Service, Toxicological Profile for Nitrophenols: 2-Nitrophenol 4-Nitrophenol, 1992, p. 3.
-
[3]
[3] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.
-
[4]
[4] Y. Wang, Solar photocatalytic degradation of eight commercial dyes in TiO2 suspension, Water Res. 34 (2000) 990-994.
-
[5]
[5] K. Kabra, R. Chaudhary, R.L. Sawhney, Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review, Ind. Eng. Chem. Res. 43 (2004) 7683-7696.
-
[6]
[6] S.J. Yu, H.J. Yun, Y.H. Kim, J. Yi, Carbon-doped TiO2 nanoparticles wrapped with nanographene as a high performance photocatalyst for phenol degradation under visible light irradiation, Appl. Catal. B 144 (2014) 893-899.
-
[7]
[7] W.H. Yuan, Z.L. Xia, L. Li, Synthesis and photocatalytic properties of core-shell TiO2@ZnIn2S4 photocatalyst, Chin. Chem. Lett. 24 (2013) 984-986.
-
[8]
[8] Y.S. Xu, W.D. Zhang, Anion exchange strategy for construction of sesame-biscuitlike Bi2O2CO3/Bi2MoO6 nanocomposites with enhanced photocatalytic activity, Appl. Catal. B 140 (2013) 306-316.
-
[9]
[9] C. Liu, H.B. Yin, L.P. Shi, et al., Preparation of hollow titania spheres and their photocatalytic activity under visible light, J. Nanosci. Nanotechnol. 14 (2014) 7072-7078.
-
[10]
[10] H.J. Tang, T.T. Han, Z.J. Luo, X.Y. Wu, Magnetite/N-doped carboxylate-rich carbon spheres: synthesis, characterization and visible-light-induced photocatalytic properties, Chin. Chem. Lett. 24 (2013) 63-66.
-
[11]
[11] Y. Liu, Y.X. Yu, W.D. Zhang, Carbon quantum dots-doped CdS microspheres with enhanced photocatalytic performance, J. Alloy Compd. 569 (2013) 102-110.
-
[12]
[12] X.C. Wang, K. Maeda, A. Thomas, et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8 (2009) 76-82.
-
[13]
[13] Y. Wang, X.C. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry, Angew. Chem. Int. Ed. 51 (2012) 68-89.
-
[14]
[14] X.C. Wang, K. Maeda, X.F. Chen, et al., Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light, J. Am. Chem. Soc. 131 (2009) 1680-1681.
-
[15]
[15] X.F. Chen, Y. Jun, K. Takanabe, et al., Ordered mesoporous SBA-15 type graphitic carbon nitride: a semiconductor host structure for photocatalytic hydrogen evolution with visible light, Chem. Mater. 21 (2009) 4093-4095.
-
[16]
[16] Y.J. Zhang, A. Thomas, M. Antonietti, X.C. Wang, Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments, J. Am. Chem. Soc. 131 (2009) 50-51.
-
[17]
[17] T. Sano, S. Tsutsui, K. Koike, et al., Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase, J. Mater. Chem. A 1 (2013) 6489-6496.
-
[18]
[18] Y.J. Zhang, T. Mori, J.H. Ye, M. Antonietti, Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation, J. Am. Chem. Soc. 132 (2010) 6294-6295.
-
[19]
[19] J.Wang,W.D.Zhang,Modificationof TiO2 nanorod arraysby graphite-likeC3N4 with high visible light photoelectrochemical activity, Electrochim. Acta 71 (2012) 10-16.
-
[20]
[20] M.J. Bojdys, J.O. Müller, M. Antonietti, A. Thomas, Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride, Chem. Eur. J. 14 (2008) 8177-8182.
-
[21]
[21] H. Lin, C.P. Huang, W. Li, et al., Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol, Appl. Catal. B: Environ. 68 (2006) 1-11.
-
[22]
[22] P. Niu, G. Liu, H.M. Cheng, Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride, J. Phys. Chem. C 116 (2012) 11013-11018.
-
[23]
[23] Y.J. Li, X.D. Li, J.W. Li, J. Yin, Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study, Water Res. 40 (2006) 1119-1126.
-
[24]
[24] K.S.W. Sing, D.H. Everett, R.A.W. Haul, et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57 (1985) 603-619.
-
[25]
[25] J.C. Yu, X.C. Wang, X.Z. Fu, Pore-wall chemistry and photocatalytic activity of mesoporous titania molecular sieve films, Chem. Mater. 16 (2004) 1523-1530.
-
[1]
-
-
-
[1]
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
-
[2]
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
-
[3]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
-
[4]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[5]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002
-
[6]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[7]
Min WANG , Dehua XIN , Wei ZHANG , Haiying YANG , Yuchun WANG , Zhaorong LIU , Meng SHI , Le SHI . Preparation and full-spectrum catalytic degradation performance of nitrogen vacancy g-C3N4/Bi/BiOBr/BiOI heterojunction material. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2283-2298. doi: 10.11862/CJIC.20250109
-
[8]
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039
-
[9]
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
-
[10]
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
-
[11]
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
-
[12]
Tianjun Ni , Hui Zhang , Liping Zhou , Roujie Ma , Yanyu Wang , Zhijun Yang , Dan Luo , Nithima Khaorapapong , Xingtao Xu , Yusuke Yamauchi , Dong Liu . Atomic cobalt catalysts on 3D interconnected g-C3N4 support for activation of peroxymonosulfate: The importance of Co-N coordination effect. Chinese Chemical Letters, 2025, 36(9): 110659-. doi: 10.1016/j.cclet.2024.110659
-
[13]
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
-
[14]
Zheng Liu , Yuqing Bian , Graham Dawson , Jiawei Zhu , Kai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272
-
[15]
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
-
[16]
Xingyan Liu , Kaili Wu , Yacen Tang , Ning Qi , Yumeng Zhang , Youzhou He , Min Fu , Yanhui Ao . Ti3C2 MXene-derived TiO2@C attached on Bi2WO6 with oxygen vacancies to fabricate S-scheme heterojunction for photocatalytic antibiotics degradation and NO removal. Chinese Chemical Letters, 2025, 36(11): 110882-. doi: 10.1016/j.cclet.2025.110882
-
[17]
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
-
[18]
Jiayao Wang , Guixu Pan , Ning Wang , Shihan Wang , Yaolin Zhu , Yunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168
-
[19]
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035
-
[20]
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1133)
- HTML views(22)
Login In
DownLoad: