Citation: Hui Liu, Zhan-Ting Li. Metalloporphyrin receptors for histidine-containing peptides[J]. Chinese Chemical Letters, ;2014, 25(05): 659-662. doi: 10.1016/j.cclet.2014.03.034 shu

Metalloporphyrin receptors for histidine-containing peptides

  • Corresponding author: Hui Liu, 
  • Received Date: 6 January 2014
    Available Online: 13 March 2014

    Fund Project: This research was financially supported by Basic Science Research Program through the National Natural Science Foundation of China (No. 21302149). (No. 21302149)

  • Two new ditopic metalloporphyrin receptors constructed by combining metalloporphyrin with crown ethers have been prepared and characterized. 1H NMR and MS spectra confirmed the complexation of receptor with peptide driven by coordination interaction and hydrogen bonding. UV/vis experiments revealed that the receptors exhibited high binding affinity to histidine-containing peptides. These receptors could differentiate short peptides of C-terminal histidine and N-terminal histidine and formed the most stable complexes with tripeptide.
  • 加载中
    1. [1]

      [1] M. Kruppa, C. Mandl, S. Miltschitzky, B. Konig, A luminescent receptor with affinity for N-terminal histidine in peptides in aqueous solution, J. Am. Chem. Soc. 127 (2005) 3362-3365.

    2. [2]

      [2] A.T. Wright, E.V. Anslyn, Cooperative metal-coordination and ion pairing in tripeptide recognition, Org. Lett. 6 (2004) 1341-1344.

    3. [3]

      [3] A. Buryak, K. Severin, An organometallic chemosensor for the sequence-selective detection of histidine- and methionine-containing peptides in water at neutral pH, Angew. Chem. Int. Ed. 43 (2004) 4771-4774.

    4. [4]

      [4] M. Sirish, V.A. Chertkov, H.J. Schneider, Porphyrin-based peptide receptors: syntheses and NMR analysis, Chem. Eur. J. 8 (2002) 1181-1188.

    5. [5]

      [5] R. Arienzo, J.D. Kilburn, Combinatorial libraries of diamidopyridine-derived ‘tweezer' receptors and sequence selective binding of peptides, Tetrahedron 58 (2002) 711-799.

    6. [6]

      [6] T. Schrader, S. Koch, Artificial protein sensors, Mol. Bio. Syst. 3 (2007) 241-248.

    7. [7]

      [7] C. Schmuck, L. Geiger, Dipeptide binding in water by a de novo designed guanidiniocarbonylpyrrole receptor, J. Am. Chem. Soc. 126 (2004) 8898-8899.

    8. [8]

      [8] T. Braxmeier, M. Demarcus, T. Fessmann, S. McAteer, J.D. Kilburn, Identification of sequence selective receptors for peptides with a carboxylic acid terminus, Chem. Eur. J. 7 (2001) 1889-1898.

    9. [9]

      [9] A. Ojida, Y. Mito-oka, K. Sada, I. Hamachi, Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(Ⅱ)- dipicolylamine)-based artificial receptors, J. Am. Chem. Soc. 126 (2004) 2454- 2463.

    10. [10]

      [10] C.P. Mandl, B. Konig, Luminescent crown ether amino acids: selective binding to N-terminal lysine in peptides, J. Org. Chem. 70 (2005) 670-674.

    11. [11]

      [11] P. Gunning, A.C. Benniston, R.D. Peacock, A modular ditopic crown-shielded phosphate ion-pair receptor, Chem. Commun. (2004) 2226-2227.

    12. [12]

      [12] A. Spath, B. Konig, Ditopic crown ether-guanidinium ion receptors for the molecular recognition of amino acids and small peptides, Tetrahedron 66 (2010) 1859- 1873.

    13. [13]

      [13] S.I. Sasaki, A. Hashizume, D. Citterio, E. Fuji, K. Suzuki, Fluororeceptor for zwitterionic form amino acids in aqueous methanol solution, Tetrahedron Lett. 43 (2002) 7243-7245.

    14. [14]

      [14] G.W. Gokel, E. Abel, Comprehensive Supramolecular Chemistry, vol. 1, Pergamon Press, New York, 1996, pp. 511-535.

    15. [15]

      [15] J.L. Hou, H.P. Yi, X.B. Shao, et al., Helicity induction in hydrogen-bonding-driven zinc porphyrin foldamers by chiral C60-incorporating histidines, Angew. Chem. Int. Ed. 45 (2006) 796-800.

    16. [16]

      [16] D. Paul, F. Melin, C. Hirtz, et al., Induced fit process in the selective distal binding of imidazoles in zinc(Ⅱ) porphyrin receptors, Inorg. Chem. 42 (2003) 3779-3787.

    17. [17]

      [17] A. Satake, Y. Kobuke, Dynamic supramolecular porphyrin systems, Tetrahedron 61 (2005) 13.

    18. [18]

      [18] J.K.M. Sanders, in: K.M. Kadish, K.M. Smith, R. Guilard (Eds.), The Porphyrin Handbook, vol. 3, Academic Press, New York, 2000, pp. 347-368.

    19. [19]

      [19] H.J. Schneider, T.J. Liu, M. Sirish, V. Malinovski, Dispersive interactions in supramolecular porphyrin complexes, Tetrahedron 58 (2002) 779-786.

    20. [20]

      [20] M. Sirish, H.J. Schneider, Electrostatic interactions between positively charged porphyrins and nucleotides or amides: buffer-dependent dramatic changes of binding affinities and modes, Chem. Commun. (2000) 23-24.

    21. [21]

      [21] M. Sirish, H.J. Schneider, Porphyrin derivatives as water-soluble receptors for peptides, Chem. Commun. (1999) 907-908.

    22. [22]

      [22] X.B. Shao, X.K. Jiang, X. Zhao, et al., Recognition through self-assembly. A quadruply- hydrogen-bonded, strapped porphyrin cleft that binds dipyridyl molecules and a [2]rotaxane, J. Org. Chem. 69 (2004) 899-907.

    23. [23]

      [23] H. Liu, X.B. Shao, M.X. Jia, et al., Selective recognition of sodium cyanide and potassium cyanide by diaza-crown ether-capped Zn-porphyrin receptors in polar solvents, Tetrahedron 61 (2005) 8095-8100.

    24. [24]

      [24] X.B. Shao, X.Z. Wang, X.K. Jiang, Z.T. Li, S.Z. Zhu, A novel strapped porphyrin receptor for molecular recognition, Tetrahedron 59 (2003) 4881-4889.

    25. [25]

      [25] K. Senokuchi, H. Nakai, Y. Nakayama, et al., New orally active serine protease inhibitors: structural requirements for their good oral activity, J. Med. Chem. 38 (1995) 4508-4517.

    26. [26]

      [26] S. Belanger, M.H. Keefe, J.L. Welch, J.T. Hupp, Rapid derivatization of mesoporous thin-film materials based on Re(I) zinc-porphyrin ‘molecular squares': selective modification of mesopore size and shape by binding of aromatic nitrogen donor ligands, Coord. Chem. Rev. 190-192 (1999) 29-45.

    27. [27]

      [27] V. Rudiger, H.J. Schneider, V.P. Solov'ev, V.P. Kazachenko, O.A. Raevsky, Crown ether-ammonium complexes: binding mechanisms and solvent effects, Eur. J. Org. Chem. 8 (1999) 1847-1856.

    28. [28]

      [28] A. Spath, B. Konig, Modular synthesis of di- and tripeptides of luminescent crown ether aminocarboxylic acids, Tetrahedron 65 (2009) 690-695.

    29. [29]

      [29] K.A. Conners, Binding Constants: The Measurement of Molecular Complex Stability, Wiley, New York, 1987.

    30. [30]

      [30] J.W. Steed, J.L. Atwood, Supramol. Chem. (2000) 120-121.

  • 加载中
    1. [1]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    2. [2]

      Jian LiJinjin ChenQi-Long HuZhen WangXiao-Feng Xiong . Recent progress of chemical methods for lysine site-selective modification of peptides and proteins. Chinese Chemical Letters, 2025, 36(5): 110126-. doi: 10.1016/j.cclet.2024.110126

    3. [3]

      Xiujuan QiaoZhenying XuZhen WeiYiting HouFengxian GaoXijuan YuXiliang Luo . A wearable electrochemical biosensor based on antifouling and conducting polyaniline hydrogel for cortisol detection in sweat. Chinese Chemical Letters, 2025, 36(11): 110884-. doi: 10.1016/j.cclet.2025.110884

    4. [4]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    5. [5]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    6. [6]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    7. [7]

      Xiaofang LuoYe WuXiaokun ZhangMin TangFeiye JuZuodong QinGregory J DunsWei-Dong ZhangJiang-Jiang QinXin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724

    8. [8]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    9. [9]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    10. [10]

      Shaofeng GongZi-Wei DengChao WuWei-Min He . Stabilized carbon radical-mediated three-component functionalization of amino acid/peptide derivatives. Chinese Chemical Letters, 2025, 36(5): 110936-. doi: 10.1016/j.cclet.2025.110936

    11. [11]

      Mengmeng YuanXiwen HuNa LiLimin XuMengxi ZhuXing PeiRui LiLu SunYupeng ChenFei YuHuining He . Kidney targeted delivery of siRNA mediated by peptide-siRNA conjugate for the treatment of acute kidney injury. Chinese Chemical Letters, 2025, 36(6): 110251-. doi: 10.1016/j.cclet.2024.110251

    12. [12]

      Min FuRuihan WangWenqiang LiuSen ZhouChunhong ZhongYaohao LiPan HeXin LiShiying ShangZhongping Tan . Improved one-pot protein synthesis enabled by a more precise assessment of peptide arylthioester reactivity. Chinese Chemical Letters, 2025, 36(7): 110542-. doi: 10.1016/j.cclet.2024.110542

    13. [13]

      Weiqi ZhangHang WuLimin XieYixin LiangXiaowan HuangZhimou YangTengyan XuFeng Lin . A two-component peptide-based hydrogel for endometrial repair and restoring fertility. Chinese Chemical Letters, 2025, 36(10): 110800-. doi: 10.1016/j.cclet.2024.110800

    14. [14]

      Ying SunMinglong ChenYing ChenWanchen ZhaoYanping FuZhengwei HuangChao LuChuanbin WuXin PanGuilan Quan . Dissolving microneedle-assisted in situ cancer vaccine combined with cytolytic peptide for anti-melanoma immunotherapy. Chinese Chemical Letters, 2025, 36(12): 110908-. doi: 10.1016/j.cclet.2025.110908

    15. [15]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    16. [16]

      Tianxu ZhangDexuan XiaoMi ZhouYunfeng LinTao ZhangXiaoxiao Cai . Protective effect of osteogenic growth peptide functionalized tetrahedral DNA nanostructure on bone marrow and bone formation ability in chemotherapy-induced myelosuppressive mice. Chinese Chemical Letters, 2025, 36(8): 110594-. doi: 10.1016/j.cclet.2024.110594

    17. [17]

      Xianghua ZengWeichen MengXiaochun HanJiachen YangKaiqi WuFengxian GaoXiliang Luo . Highly stable and antifouling solid-contact ion-selective electrode for K+ detection in complex system based on multifunctional peptide and conductive MOF. Chinese Chemical Letters, 2025, 36(8): 110564-. doi: 10.1016/j.cclet.2024.110564

    18. [18]

      Xiao ZhuYanbing MoJiawei ChenGaopan LiuYonggang WangXiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146

    19. [19]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    20. [20]

      Lijuan LiuZhihao ZhaoFeiwan ZouWukun LiuYunlong Lu . Advances in combination therapy for the treatment of estrogen receptor positive breast cancer. Chinese Chemical Letters, 2025, 36(10): 111451-. doi: 10.1016/j.cclet.2025.111451

Metrics
  • PDF Downloads(0)
  • Abstract views(1097)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return