Citation: An-Qi Ju, Meng-Juan Li, Miao Luo, Ming-Qiao Ge. Poly(acrylonitrile-co-3-aminocarbonyl-3-butenoic acid methyl ester):A better precursor material for carbon fi ber than acrylonitrile terpolymer[J]. Chinese Chemical Letters, ;2014, 25(9): 1275-1278. doi: 10.1016/j.cclet.2014.03.009 shu

Poly(acrylonitrile-co-3-aminocarbonyl-3-butenoic acid methyl ester):A better precursor material for carbon fi ber than acrylonitrile terpolymer

  • Corresponding author: An-Qi Ju, 
  • Received Date: 4 December 2013
    Available Online: 28 February 2014

    Fund Project: Financial support of this work from Important National Research Program "863" (No. 2012AA030313-1) (No. 2012AA030313-1) Undergraduate Innovation Project (No. 1065210232130740) (No. 1065210232130740)The Fundamental Research Funds for the Central Universities (No. JUSRP11450) were gratefully acknowledged. (No. JUSRP11450)

  • In order to improve the stabilization and spinnability of polyacrylonitrile, a bifunctional comonomer containing both ester and amide groups was synthesized to prepare poly(acrylonitrile-co-3-aminocarbonyl-3-butenoic acid methyl ester) [P(AN-co-ABM)] copolymers used as the carbon fiber precursor instead of poly(acrylonitrile-acrylamide-methyl acrylate) [P(AN-AM-MA)] terpolymer. The differential scanning calorimetry and thermogravimetry results show that the stabilization of P(AN-co-ABM) have been remarkably improved by ABM compared with P(AN-AM-MA) terpolymer, such as lower initiation temperature, broadened exothermic peak and smaller activation energy. Moreover, the spinnability of P(AN-co-ABM) is also improved by ABM due to the lubrication of ester groups in ABM. This study clearly shows that P(AN-co-ABM) copolymer is a better material for use as a carbon fiber precursor than P(AN-AM-MA) terpolymer.

    1. [1]

      [1] W. Li, D.H. Long, J. Miyawaki, et al., Structural features of polyacrylonitrile-based carbon fibers, J. Mater. Sci. 47 (2012) 919-928.

    2. [2]

      [2] I. Mochida, S.H. Yoon, N. Takano, et al., Microstructure of mesophase pitch-based carbon fiber and its control, Carbon 41 (2003) 941-956.

    3. [3]

      [3] S.H. Bahrami, P. Bajaj, K. Sen, Effect of coagulation conditions on properties of poly(acrylonitrile-carboxylic acid) fibers, J. Appl. Polym. Sci. 89 (2003) 1825-1837.

    4. [4]

      [4] J.J. Liu, H.Y. Ge, C.G. Wang, Modification of polyacrylonitrile precursors for carbon fiber via copolymerzation of acrylonitrile of acrylonitrile with ammonium itaconate, J. Appl. Polym. Sci. 102 (2006) 2175-2179.

    5. [5]

      [5] P. Bajaj, T.V. Screekumar, K. Sen, Structural evolution of polyacrylonitrile fibers in stabilization and carbonization, Polymer 42 (2001) 1707-1718.

    6. [6]

      [6] I.F. Catta Preta, S.K. Sakata, G. Garcia, et al., Thermal behavior of polyacrylonitrile polymers synthesized under different conditions and comonomer compositions, J. Therm. Anal. Calorim. 87 (2007) 657-659.

    7. [7]

      [7] H.E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29 (1957) 1702-1706.

    8. [8]

      [8] A.Q. Ju, S.Y. Guang, H.Y. Xu, Effect of comonomer structure on the stabilization and spinnability of polyacrylonitrile copolymers, Carbon 54 (2013) 323-335.

    9. [9]

      [9] A.Q. Ju, S.Y. Guang, H.Y. Xu, Mechanism and kinetics of stabilization reactions of poly(acrylonitrile-co-b-methylhydrogen itaconate), J. Mater. Res. 27 (2012) 2668-2676.

    10. [10]

      [10] M.K. Jain, A.S. Abhiraman, Conversion of acrylonitrile-based precursors to carbon fibers, J. Mater. Sci. 22 (1987) 278-300.

    11. [11]

      [11] Z.L. Zhou, X.G. Wu, M.R. Wang, Rheological properties of thermotropic liquid crystalline aromatic copolyesters, Polym. Eng. Sci. 28 (1988) 136-142.

    12. [12]

      [12] Y. Wang, D.C. Wu, Extrusion, fiber formation and characterization of thermotropic liquid crystalline copolyesters, J. Appl. Polym. Sci. 66 (1997) 1389-1397.

    1. [1]

      [1] W. Li, D.H. Long, J. Miyawaki, et al., Structural features of polyacrylonitrile-based carbon fibers, J. Mater. Sci. 47 (2012) 919-928.

    2. [2]

      [2] I. Mochida, S.H. Yoon, N. Takano, et al., Microstructure of mesophase pitch-based carbon fiber and its control, Carbon 41 (2003) 941-956.

    3. [3]

      [3] S.H. Bahrami, P. Bajaj, K. Sen, Effect of coagulation conditions on properties of poly(acrylonitrile-carboxylic acid) fibers, J. Appl. Polym. Sci. 89 (2003) 1825-1837.

    4. [4]

      [4] J.J. Liu, H.Y. Ge, C.G. Wang, Modification of polyacrylonitrile precursors for carbon fiber via copolymerzation of acrylonitrile of acrylonitrile with ammonium itaconate, J. Appl. Polym. Sci. 102 (2006) 2175-2179.

    5. [5]

      [5] P. Bajaj, T.V. Screekumar, K. Sen, Structural evolution of polyacrylonitrile fibers in stabilization and carbonization, Polymer 42 (2001) 1707-1718.

    6. [6]

      [6] I.F. Catta Preta, S.K. Sakata, G. Garcia, et al., Thermal behavior of polyacrylonitrile polymers synthesized under different conditions and comonomer compositions, J. Therm. Anal. Calorim. 87 (2007) 657-659.

    7. [7]

      [7] H.E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29 (1957) 1702-1706.

    8. [8]

      [8] A.Q. Ju, S.Y. Guang, H.Y. Xu, Effect of comonomer structure on the stabilization and spinnability of polyacrylonitrile copolymers, Carbon 54 (2013) 323-335.

    9. [9]

      [9] A.Q. Ju, S.Y. Guang, H.Y. Xu, Mechanism and kinetics of stabilization reactions of poly(acrylonitrile-co-b-methylhydrogen itaconate), J. Mater. Res. 27 (2012) 2668-2676.

    10. [10]

      [10] M.K. Jain, A.S. Abhiraman, Conversion of acrylonitrile-based precursors to carbon fibers, J. Mater. Sci. 22 (1987) 278-300.

    11. [11]

      [11] Z.L. Zhou, X.G. Wu, M.R. Wang, Rheological properties of thermotropic liquid crystalline aromatic copolyesters, Polym. Eng. Sci. 28 (1988) 136-142.

    12. [12]

      [12] Y. Wang, D.C. Wu, Extrusion, fiber formation and characterization of thermotropic liquid crystalline copolyesters, J. Appl. Polym. Sci. 66 (1997) 1389-1397.

  • 加载中
    1. [1]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    2. [2]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    3. [3]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    4. [4]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    5. [5]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    6. [6]

      Wenfeng ShaoChuanlin LiChenggang WangGuangsen DuShunshun ZhaoGuangmeng QuYupeng XingTianshuo GuoHongfei LiXijin Xu . Stabilization of zinc anode by trace organic corrosion inhibitors for long lifespan. Chinese Chemical Letters, 2025, 36(3): 109531-. doi: 10.1016/j.cclet.2024.109531

    7. [7]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    8. [8]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    9. [9]

      Bin ZhaoHeping LuoJiaqing LiuSha ChenHan XuYu LiaoXue Feng LuYan QingYiqiang Wu . S-doped carbonized wood fiber decorated with sulfide heterojunction-embedded S, N-doped carbon microleaf arrays for efficient high-current-density oxygen evolution. Chinese Chemical Letters, 2025, 36(5): 109919-. doi: 10.1016/j.cclet.2024.109919

    10. [10]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    11. [11]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    12. [12]

      Feng ShiGuiling LiHaibing ZhuLing LiMing ChenJuan LiHuifang ShenHao ZengLingfeng MinZhanjun Yang . Nanozyme-triggered polymerization amplification strategy for constructing highly sensitive surface plasmon resonance immunosensing. Chinese Chemical Letters, 2025, 36(6): 110333-. doi: 10.1016/j.cclet.2024.110333

    13. [13]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    14. [14]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    15. [15]

      Heng GaoZhaocong ChengGuangshui TuZonglin QiuXieyi XiaoHaotian ZhouHandou ZhengHaiyang Gao . Thermally robust bis(imino)pyridyl iron catalysts for ethylene polymerization: Synergy effects of weak π-π interaction, steric bulk, and electronic tuning. Chinese Chemical Letters, 2025, 36(5): 110762-. doi: 10.1016/j.cclet.2024.110762

    16. [16]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    17. [17]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    18. [18]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    19. [19]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    20. [20]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

Metrics
  • PDF Downloads(0)
  • Abstract views(808)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return