Citation: Bing Yu, Hua Yuan, Yi-Ying Yang, Hai-Lin Cong, Tian-Zi Hao, Xiao-Dan Xu, Xiu-Lan Zhang, Shu-Jing Yang, Li-Xin Zhang. Detection of dopamine using self-assembled diazoresin/single-walled carbon nanotube modified electrodes[J]. Chinese Chemical Letters, ;2014, 25(4): 523-528. doi: 10.1016/j.cclet.2014.01.029 shu

Detection of dopamine using self-assembled diazoresin/single-walled carbon nanotube modified electrodes

  • Corresponding author: Bing Yu,  Hai-Lin Cong, 
  • Received Date: 24 October 2013
    Available Online: 2 January 2014

    Fund Project: This work is financially supported by the National Key Basic Research Development Program of China (973 Special Preliminary Study Plan, No. 2012CB722705) (973 Special Preliminary Study Plan, No. 2012CB722705) the Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry (No. 20111568) (No. 131045) and the Science and Technology Program of Qingdao (No. 1314159jch). (No. 20111568)

  • Ultrathin films of diazoresin (DR)/single-walled carbon nanotube (SWNT) were fabricated on thioglycollic acid (TGA) decorated gold (Au) electrodes by the self-assembly method combined with the photocrosslinking technique. The electrochemical behavior of dopamine (DA) at the DR/SWNT modified electrodes was studied using the cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. Under the optimal conditions, a linear CV response to DA concentration from 1 μmol/L to 40 μmol/L was observed, and the detection limit of DA was 2.1×10-3 μmol/L via the DPV method in the presence of 10 μmol/L of uric acid (UA) or 2.5×10-3 μmol/L via the DPV method in the presence of 10 μmol/L of ascorbic acid (AA). Moreover, the modified electrodes exhibited good reproducibility and sensitivity, demonstrating its feasibility for analytical purposes.
  • 加载中
    1. [1]

      [1] R.M. Wightman, L.J. May, A.C. Michael, Detection of dopamine dynamics in the brain, Anal. Chem. 60 (1988) 769A-779A.

    2. [2]

      [2] D. Han, T. Han, C. Shan, A. Ivaska, L. Niu, Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode, Electroanalysis 22 (2010) 2001-2008.

    3. [3]

      [3] P. Damier, E.C. Hirsch, Y. Aqid, A.M. Graybiel, The substantia nigra of the human brain. Ⅱ. Patterns of loss of dopamine-containing neurons in Parkinson's disease, Brain 122 (1999) 1437-1448.

    4. [4]

      [4] U. Chandra, B.E.K. Swamy, O. Gilbert, et al., Poly(amaranth) film based sensor for resolution of dopamine in the presence of uric acid: a voltammetric study, Chin. Chem. Lett. 21 (2010) 1490-1492.

    5. [5]

      [5] W. Song, Y. Chen, J. Xu, D.B. Tian, A selective voltammetric detection for dopamine usingpoly(gallic acid) filmmodified electrode, Chin.Chem. Lett.21 (2010) 349-352.

    6. [6]

      [6] A.E. Poliakov, A.V. Dumshakova, S.V. Muginova, T.N. Shekhovtsova, A peroxidasebased method for the determination of dopamine, adrenaline, and a-methyldopa in the presence of thyroid hormones in pharmaceutical forms, Talanta 84 (2011) 710-716.

    7. [7]

      [7] S. Liu, J. Yan, G. He, et al., Layer-by-layer assembled multilayer films of reduced graphene oxide/gold nanoparticles for the electrochemical detection of dopamine, J. Electroanal. Chem. 672 (2012) 40-44.

    8. [8]

      [8] Z.H. Sheng, X.Q. Zheng, J.Y. Xu, et al., Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid, Biosens. Bioelectron. 34 (2012) 125-131.

    9. [9]

      [9] E. Farjami, R. Campos, J.S. Nielsen, et al., RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine, Anal. Chem. 85 (2013) 121-128.

    10. [10]

      [10] B. Kong, A. Zhu, Y. Luo, et al., Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition, Angew. Chem. Int. Ed. 50 (2011) 1837-1840.

    11. [11]

      [11] H. Su, B. Sun, L. Chen, Z. Xu, S. Ai, Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions, Anal. Methods 4 (2012) 3981-3986.

    12. [12]

      [12] J.M. Liu, X.X. Wang, M.L. Cui, et al., A promising non-aggregation colorimetric sensor of AuNRs-Ag+ for determination of dopamine, Sens. Actuators B 176 (2013) 97-102.

    13. [13]

      [13] J.J. Feng, H. Guo, Y.F. Li, et al., Single molecular functionalized gold nanoparticles for hydrogen-bonding recognition and colorimetric detection of dopamine with high sensitivity and selectivity, ACS Appl. Mater. Interfaces 5 (2013) 1226-1231.

    14. [14]

      [14] S.S. Li, H.L. Wu, Y.J. Liu, H.W. Gu, R.Q. Yu, Simultaneous determination of tyrosine and dopamine in urine samples using excitation-emission matrix fluorescence coupled with second-order calibration, Chin. Chem. Lett. 24 (2013) 239-242.

    15. [15]

      [15] A. El-Beqqali, A. Kussak, M. Abdel-Rehim, Determination of dopamine and serotonine in human urine samples utilizing microextraction online with liquid chromatography/electrospray tandem mass spectrometry, J. Sep. Sci. 30 (2007) 421-424.

    16. [16]

      [16] P.S. Rao, N. Rujikarn, J.M. Luber Jr., D.H. Tyras, A specific sensitive HPLC method for determination of plasma dopamine, Chromatographia 28 (1989) 307-310.

    17. [17]

      [17] J. Cho, K. Char, J.D. Hong, K.B. Lee, Fabrication of highly ordered multilayer films using a spin self-assembly method, Adv. Mater. 13 (2001) 1076-1078.

    18. [18]

      [18] M. Grzelczak, J. Vermant, E.M. Furst, L.M. Liz-Marzan, Directed self-assembly of nanoparticles, ACS Nano 4 (2010) 3591-3605.

    19. [19]

      [19] R. Deng, S. Liu, J. Li, et al., Mesoporous block copolymer nanoparticles with tailored structures by hydrogen-bonding-assisted self-assembly, Adv. Mater. 24 (2012) 1889-1983.

    20. [20]

      [20] H. Cong, J. Chen, W. Cao, Covalently attached sandwich structure from colloidal particles and diazoresin, J. Colloid Interface Sci. 263 (2003) 665-668.

    21. [21]

      [21] B. Yu, H.L. Cong, H.W. Liu, et al., Fabrication and characterization of stable ultrathin film micropatterns containing DNA and photosensitive polymer diazoresin, Anal. Bioanal. Chem. 384 (2006) 385-390.

    22. [22]

      [22] F. Pompeo, D.E. Resasco, Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine, Nano Lett. 2 (2002) 369-373.

    23. [23]

      [23] B. Yu, W. Cui, H. Cong, et al., A novel diazoresin/polyethylene glycol covalent capillary coating for analysis of proteins by capillary electrophoresis, RSC Adv. 3 (2013) 20010-20015.

    24. [24]

      [24] B. Yu, X.M. Liu, H.L. Cong, Z.H. Wang, J.G. Tang, Fabrication of stable ultrathin transparent conductive graphene micropatterns using layer by layer self-assembly, Sci. Adv. Mater. 5 (2013) 1533-1538.

  • 加载中
    1. [1]

      Chenghao LiuXiaofeng LinJing LiaoMin YangMin JiangYue HuangZhizhi DuLina ChenSanjun FanQitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598

    2. [2]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    3. [3]

      Xilin BaiWei DengJingjuan WangMing Zhou . Enrichment-enhanced detection strategy in the optimized monitoring system of dopamine with carbon dots-based probe. Chinese Chemical Letters, 2025, 36(2): 109959-. doi: 10.1016/j.cclet.2024.109959

    4. [4]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    5. [5]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    6. [6]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    7. [7]

      Hao ZhangHao LiuKe HuangQingxiu XiaHongjie XiongXiaohui LiuHui JiangXuemei Wang . Ionic exchange based intracellular self-assembly of pitaya-structured nanoparticles for tumor imaging. Chinese Chemical Letters, 2025, 36(6): 110281-. doi: 10.1016/j.cclet.2024.110281

    8. [8]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    9. [9]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    10. [10]

      Shengyong LiuHui LiWei ZhangYan ZhangYan DongWei Tian . Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition. Chinese Chemical Letters, 2025, 36(6): 110465-. doi: 10.1016/j.cclet.2024.110465

    11. [11]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    12. [12]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    13. [13]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    14. [14]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    15. [15]

      Fengying YeMing HuJun LuoWei YuZhirong XuJinjin FuYansong Zheng . Significantly boosting circularly polarized luminescence by synergy of helical and planar chirality. Chinese Chemical Letters, 2025, 36(5): 110724-. doi: 10.1016/j.cclet.2024.110724

    16. [16]

      Weibin ShenJie LiuGongyu WenShuai LiBinhui YuShuangyu SongBojie GongRongyang ZhangShibao LiuHongpeng WangYao WangYujing LiuHuadong YuanJianming LuoShihui ZouXinyong TaoJianwei Nai . Formation of FeNi-based nanowire-assembled superstructures with tunable anions for electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(7): 110184-. doi: 10.1016/j.cclet.2024.110184

    17. [17]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    18. [18]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    19. [19]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    20. [20]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

Metrics
  • PDF Downloads(0)
  • Abstract views(810)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return