Citation: Qing-Xiang Zhou, Yuan-Yuan Gao. Combination of ionic liquid dispersive liquid-phase microextraction and high performance liquid chromatography for the determination of triazine herbicides in water samples[J]. Chinese Chemical Letters, ;2014, 25(05): 745-748. doi: 10.1016/j.cclet.2014.01.026 shu

Combination of ionic liquid dispersive liquid-phase microextraction and high performance liquid chromatography for the determination of triazine herbicides in water samples

  • Corresponding author: Qing-Xiang Zhou, 
  • Received Date: 16 December 2013
    Available Online: 13 January 2014

    Fund Project: This work was financially supported by the National Natural Science Foundation of China (No. 21377167) (No. 21377167) Program for New Century Excellent Talents in University (No. NCET-10-0813). (No. NCET-10-0813)

  • A temperature-controlled ionic liquid dispersive liquid-phasemicroextraction in combination with high performance liquid chromatography was developed for the enrichment and determination of triazine herbicides such as cyanazine, simazine, and atrazine in water samples. 1-Octyl-3-methylimidazolium hexafluorophosphate ([C8MIM][PF6]) was selected as the extraction solvent. Several experimental parameters were optimized. Under the optimal conditions, the linear range for cyanazine was in the concentration range of 0.5-80 μg/L and the linear range for simazine and atrazine was in the range of 1.0-100 mg/L. The limit of detection (LOD, S/N = 3) was in the ranges of 0.05-0.06 μg/L, and the intra day and inter day precision (RSDs, n = 6)was in the ranges of 3.2%-6.6% and 4.8%-8.9%, respectively. Four real water samples were analyzed with the developedmethod, and the experimental results showed that the spiked recoveries were satisfactory. All these exhibited that the developed method was a valuable tool for monitoring such pollutants.
    1. [1]

      [1] R.A. Boyd, Herbicides and herbicide degradates in shallow groundwater and the Cedar River near a municipal well field, Cedar Rapids, Iowa, Sci. Total Environ. 248 (2000) 241-253.

    2. [2]

      [2] G. Shen, H.K. Lee, Determination of triazines in soil by microwave-assisted extraction followed by solid-phase microextraction and gas chromatography- mass spectrometry, J. Chromatogr. A 985 (2003) 167-174.

    3. [3]

      [3] Y. Wang, J.Y. You, R.B. Ren, et al., Determination of triazines in honey by dispersive liquid-liquid microextraction high-performance liquid chromatography, J. Chromatogr. A 1217 (2010) 4241-4246.

    4. [4]

      [4] Drinking Water Inspectorate, A report by the Chief Inspector, Drinking Water 1993, HMSO, London, 1994.

    5. [5]

      [5] US Environmental Protection Agency, National Survey of Pesticides in Drinking Water Wells, Phase I Report, EPA PB-91-125765, National Technical Information Services, Springfield, VA, 1990.

    6. [6]

      [6] EC Drinking Water Guideline, 98/83/CE, Brussels, November (1998).

    7. [7]

      [7] C.L. Ye, Q.X. Zhou, X.M. Wang, Improved single-drop microextraction for high sensitive analysis, J. Chromatogr. A 1139 (2007) 7-13.

    8. [8]

      [8] M. Rezaee, Y. Yamini, M. Faraji, Evolution of dispersive liquid-liquid microextraction method, J. Chromatogr. A 1217 (2010) 2342-2357.

    9. [9]

      [9] R.S. Zhao, X. Wang, J.P. Yuan, S.S. Wang, C.G. Chen, Trace determination of hexabromocyclododecane diastereomers in water samples with temperature controlled ionic liquid dispersive liquid phase microextraction, Chin. Chem. Lett. 22 (2011) 883-886.

    10. [10]

      [10] S. Wang, L. Ren, C.Y. Liu, J. Ge, F.M. Liu, Determination of five polar herbicides in water samples by ionic liquid dispersive liquid-phase microextraction, Anal. Bioanal. Chem. 397 (2010) 3089-3095.

    11. [11]

      [11] Q.X. Zhou, H.H. Bai, G.H. Xie, J.P. Xiao, Temperature-controlled ionic liquid dispersive liquid phase micro-extraction, J. Chromatogr. A 1177 (2008) 43-49.

    12. [12]

      [12] Q.X. Zhou, H.H. Bai, G.H. Xie, J.P. Xiao, Trace determination of organophosphorus pesticides in environmental samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction, J. Chromatogr. A 1188 (2008) 148-153.

    13. [13]

      [13] H.H. Bai, Q.X. Zhou, G.H. Xie, J.P. Xiao, Temperature-controlled ionic liquid-liquidphase microextraction for the pre-concentration of lead from environmental samples prior to flame atomic absorption spectrometry, Talanta 80 (2010) 1638-1642.

    14. [14]

      [14] G. Cravotto, L. Boffa, J.M. Lévêque, et al., A speedy one-pot synthesis of secondgeneration ionic liquids under ultrasound and/or microwave, Aust. J. Chem. 60 (2007) 946-950.

    1. [1]

      [1] R.A. Boyd, Herbicides and herbicide degradates in shallow groundwater and the Cedar River near a municipal well field, Cedar Rapids, Iowa, Sci. Total Environ. 248 (2000) 241-253.

    2. [2]

      [2] G. Shen, H.K. Lee, Determination of triazines in soil by microwave-assisted extraction followed by solid-phase microextraction and gas chromatography- mass spectrometry, J. Chromatogr. A 985 (2003) 167-174.

    3. [3]

      [3] Y. Wang, J.Y. You, R.B. Ren, et al., Determination of triazines in honey by dispersive liquid-liquid microextraction high-performance liquid chromatography, J. Chromatogr. A 1217 (2010) 4241-4246.

    4. [4]

      [4] Drinking Water Inspectorate, A report by the Chief Inspector, Drinking Water 1993, HMSO, London, 1994.

    5. [5]

      [5] US Environmental Protection Agency, National Survey of Pesticides in Drinking Water Wells, Phase I Report, EPA PB-91-125765, National Technical Information Services, Springfield, VA, 1990.

    6. [6]

      [6] EC Drinking Water Guideline, 98/83/CE, Brussels, November (1998).

    7. [7]

      [7] C.L. Ye, Q.X. Zhou, X.M. Wang, Improved single-drop microextraction for high sensitive analysis, J. Chromatogr. A 1139 (2007) 7-13.

    8. [8]

      [8] M. Rezaee, Y. Yamini, M. Faraji, Evolution of dispersive liquid-liquid microextraction method, J. Chromatogr. A 1217 (2010) 2342-2357.

    9. [9]

      [9] R.S. Zhao, X. Wang, J.P. Yuan, S.S. Wang, C.G. Chen, Trace determination of hexabromocyclododecane diastereomers in water samples with temperature controlled ionic liquid dispersive liquid phase microextraction, Chin. Chem. Lett. 22 (2011) 883-886.

    10. [10]

      [10] S. Wang, L. Ren, C.Y. Liu, J. Ge, F.M. Liu, Determination of five polar herbicides in water samples by ionic liquid dispersive liquid-phase microextraction, Anal. Bioanal. Chem. 397 (2010) 3089-3095.

    11. [11]

      [11] Q.X. Zhou, H.H. Bai, G.H. Xie, J.P. Xiao, Temperature-controlled ionic liquid dispersive liquid phase micro-extraction, J. Chromatogr. A 1177 (2008) 43-49.

    12. [12]

      [12] Q.X. Zhou, H.H. Bai, G.H. Xie, J.P. Xiao, Trace determination of organophosphorus pesticides in environmental samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction, J. Chromatogr. A 1188 (2008) 148-153.

    13. [13]

      [13] H.H. Bai, Q.X. Zhou, G.H. Xie, J.P. Xiao, Temperature-controlled ionic liquid-liquidphase microextraction for the pre-concentration of lead from environmental samples prior to flame atomic absorption spectrometry, Talanta 80 (2010) 1638-1642.

    14. [14]

      [14] G. Cravotto, L. Boffa, J.M. Lévêque, et al., A speedy one-pot synthesis of secondgeneration ionic liquids under ultrasound and/or microwave, Aust. J. Chem. 60 (2007) 946-950.

  • 加载中
    1. [1]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    2. [2]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    3. [3]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    4. [4]

      Yuhao ZhouSiyuan WuXiaozhe RenHongjin LiShu LiTianying Yan . Effects of salt fraction on the Na+ transport in salt-in-ionic liquid electrolytes. Chinese Chemical Letters, 2025, 36(6): 110048-. doi: 10.1016/j.cclet.2024.110048

    5. [5]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    6. [6]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    7. [7]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    8. [8]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    9. [9]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    10. [10]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    11. [11]

      Mengchen Liu Yufei Zhang Yi Xiao Yang Wei Meichen Bi Huaide Jiang Yan Yu Shenghong Zhong . High stretchability and toughness of liquid metal reinforced conductive biocompatible hydrogels for flexible strain sensors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100518-100518. doi: 10.1016/j.cjsc.2025.100518

    12. [12]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    13. [13]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    14. [14]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    15. [15]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    16. [16]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    17. [17]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    18. [18]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    19. [19]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

    20. [20]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

Metrics
  • PDF Downloads(0)
  • Abstract views(906)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return