Citation: Ke-Hui Hou, Cong-Ming Ma, Zu-Liang Liu. Synthesis, characterization and theoretical study of 2-azido-4-nitroimidazole-based energetic salts[J]. Chinese Chemical Letters, ;2014, 25(3): 438-440. doi: 10.1016/j.cclet.2013.12.007 shu

Synthesis, characterization and theoretical study of 2-azido-4-nitroimidazole-based energetic salts

  • Corresponding author: Zu-Liang Liu, 
  • Received Date: 28 August 2013
    Available Online: 27 November 2013

  • The 2-azido-4-nitroimidazole-based energetic salts were synthesized in a simple and straightforward manner. The structures of these new salts were determined by IR, 1H NMR and 13C NMR spectroscopy and elemental analysis. These salts also exhibited high positive enthalpies of formation, high nitrogen content, and moderate detonation properties.

    1. [1]

      [1] (a) R.P. Singh, R.D. Verma, D.T. Meshri, J.M. Shreeve, Energetic nitrogen-rich salts and ionic liquids, Angew. Chem. Int. Ed. 45 (2006) 3584-3601; (b) H. Gao, C. Ye, O.D. Gupta, et al., 2,4,5-Trinitroimidazole-based energetic salts, Chem. Eur. J. 13 (2007) 3853-3860; (c) R. Duddu, P.R. Dave, R. Damavarapu, N. Gelber, D. Parrish, Synthesis of Namino-and N-nitramino-nitroimidazoles, Tetrahedron Lett. 51 (2010) 399-401; (d) R. Duddu, M.X. Zhang, R. Damavarapu, N. Gelber, Molten-state nitration of substituted imidazoles: new synthetic approaches to the novel melt-cast energetic material, 1-methyl-2,4,5-trinitroimidazole, Synthesis 17 (2011) 2864-2895.

    2. [2]

      [2] D. Srinivas, V.D. Ghule, K. Muralidharan, H.D.B. Jenkins, Tetraanionic nitrogen-rich tetrazole-based energetic salts, Chem. Asian J. 8 (2013) 1023-1028.

    3. [3]

      [3] J.H. Zhang, C.L. He, D.A. Parrish, J.M. Shreeve, Nitramines with varying sensitivities: functionalized dipyrazolyl-N-nitromethanamines as energetic materials, Chem. Eur. J. 19 (2013) 8929-8936.

    4. [4]

      [4] A. Hammerl, T.M. Klapötke, Tetrazolylpentazoles: nitrogen-rich compounds, Inorg. Chem. 41 (2002) 906-912.

    5. [5]

      [5] Z. Tang, L. Yang, X.J. Qiao, et al., Crystal structure, thermal decomposition and sensitivity properties of (AIM)(HTNR) and (AIM)(PA), Chem. Res. Chin. Univ. 28 (2012) 4-8.

    6. [6]

      [6] Z. Tang, L. Yang, X.J. Qiao, et al., Crystal structure and thermal analysis of two new energetic compounds (AIM)NO3 and (AIM)(HTNR) H2O, Acta Chim. Sin. 70 (2012) 471-478.

    7. [7]

      [7] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Gaussian, Inc., Wallingford, CT, 2009.

    8. [8]

      [8] W.J. Hehre, R. Ditchfield, J.A. Pople, Self-consistent molecular orbital methods. XⅡ. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules, J. Chem. Phys. 56 (1972) 2257-2261.

    9. [9]

      [9] (a) H.D.B. Jenkins, Thermodynamics of the relationship between lattice energy and lattice enthalpy, J. Chem. Educ. 82 (2005) 950-952; (b) H.D.B. Jenkins, D. Tudela, L. Glasser, Lattice potential energy estimation for complex ionic salts from density measurements, Inorg. Chem. 41 (2002) 2364-2367; (c) L. Glasser, H.D.B. Jenkins, Lattice energies and unit cell volumes of complex ionic solids, J. Am. Chem. Soc. 122 (2000) 632-638; (d) H.D.B. Jenkins, H.K. Roobottom, J. Passmore, L. Glasser, Relationships among ionic lattice energies, molecular (formula unit) volumes, and thermochemical radii, Inorg. Chem. 38 (1999) 3609-3620.

    10. [10]

      [10] D.W.M. Hofmann, Fast estimation of crystal densities, Acta Crystallogr. B 58 (2002) 489-493.

    11. [11]

      [11] (a) M.J. Kamlet, S.J. Jacobs, Chemistry of detonations. I. A simple method for calculating detonation properties of C-H-N-O explosives, J. Chem. Phys. 48 (1968) 23-25; (b) M.J. Kamlet, J.E. Ablard, Chemistry of detonations. Ⅱ. Buffered equilibria, J. Chem. Phys. 48 (1968) 36-42.

    1. [1]

      [1] (a) R.P. Singh, R.D. Verma, D.T. Meshri, J.M. Shreeve, Energetic nitrogen-rich salts and ionic liquids, Angew. Chem. Int. Ed. 45 (2006) 3584-3601; (b) H. Gao, C. Ye, O.D. Gupta, et al., 2,4,5-Trinitroimidazole-based energetic salts, Chem. Eur. J. 13 (2007) 3853-3860; (c) R. Duddu, P.R. Dave, R. Damavarapu, N. Gelber, D. Parrish, Synthesis of Namino-and N-nitramino-nitroimidazoles, Tetrahedron Lett. 51 (2010) 399-401; (d) R. Duddu, M.X. Zhang, R. Damavarapu, N. Gelber, Molten-state nitration of substituted imidazoles: new synthetic approaches to the novel melt-cast energetic material, 1-methyl-2,4,5-trinitroimidazole, Synthesis 17 (2011) 2864-2895.

    2. [2]

      [2] D. Srinivas, V.D. Ghule, K. Muralidharan, H.D.B. Jenkins, Tetraanionic nitrogen-rich tetrazole-based energetic salts, Chem. Asian J. 8 (2013) 1023-1028.

    3. [3]

      [3] J.H. Zhang, C.L. He, D.A. Parrish, J.M. Shreeve, Nitramines with varying sensitivities: functionalized dipyrazolyl-N-nitromethanamines as energetic materials, Chem. Eur. J. 19 (2013) 8929-8936.

    4. [4]

      [4] A. Hammerl, T.M. Klapötke, Tetrazolylpentazoles: nitrogen-rich compounds, Inorg. Chem. 41 (2002) 906-912.

    5. [5]

      [5] Z. Tang, L. Yang, X.J. Qiao, et al., Crystal structure, thermal decomposition and sensitivity properties of (AIM)(HTNR) and (AIM)(PA), Chem. Res. Chin. Univ. 28 (2012) 4-8.

    6. [6]

      [6] Z. Tang, L. Yang, X.J. Qiao, et al., Crystal structure and thermal analysis of two new energetic compounds (AIM)NO3 and (AIM)(HTNR) H2O, Acta Chim. Sin. 70 (2012) 471-478.

    7. [7]

      [7] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Gaussian, Inc., Wallingford, CT, 2009.

    8. [8]

      [8] W.J. Hehre, R. Ditchfield, J.A. Pople, Self-consistent molecular orbital methods. XⅡ. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules, J. Chem. Phys. 56 (1972) 2257-2261.

    9. [9]

      [9] (a) H.D.B. Jenkins, Thermodynamics of the relationship between lattice energy and lattice enthalpy, J. Chem. Educ. 82 (2005) 950-952; (b) H.D.B. Jenkins, D. Tudela, L. Glasser, Lattice potential energy estimation for complex ionic salts from density measurements, Inorg. Chem. 41 (2002) 2364-2367; (c) L. Glasser, H.D.B. Jenkins, Lattice energies and unit cell volumes of complex ionic solids, J. Am. Chem. Soc. 122 (2000) 632-638; (d) H.D.B. Jenkins, H.K. Roobottom, J. Passmore, L. Glasser, Relationships among ionic lattice energies, molecular (formula unit) volumes, and thermochemical radii, Inorg. Chem. 38 (1999) 3609-3620.

    10. [10]

      [10] D.W.M. Hofmann, Fast estimation of crystal densities, Acta Crystallogr. B 58 (2002) 489-493.

    11. [11]

      [11] (a) M.J. Kamlet, S.J. Jacobs, Chemistry of detonations. I. A simple method for calculating detonation properties of C-H-N-O explosives, J. Chem. Phys. 48 (1968) 23-25; (b) M.J. Kamlet, J.E. Ablard, Chemistry of detonations. Ⅱ. Buffered equilibria, J. Chem. Phys. 48 (1968) 36-42.

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    3. [3]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    4. [4]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    5. [5]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    6. [6]

      Genxiang WangLinfeng FanPeng WangJunfeng WangFen QiaoZhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498

    7. [7]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    8. [8]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    9. [9]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    10. [10]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    11. [11]

      Zhixiang LiZhirong YangChang YaoBin WuGang QianXuezhi DuanXinggui ZhouJing Zhang . Efficient continuous synthesis of 2-hydroxycarbazole and 4-hydroxycarbazole in a millimeter scale photoreactor. Chinese Chemical Letters, 2024, 35(4): 108893-. doi: 10.1016/j.cclet.2023.108893

    12. [12]

      Juanjuan WangFang WangBin QinYue WuHuan YangXiaolong LiLanfang WangXiufang QinXiaohong Xu . Controlled synthesis and excellent magnetism of ferrimagnetic NiFe2Se4 nanostructures. Chinese Chemical Letters, 2024, 35(11): 109449-. doi: 10.1016/j.cclet.2023.109449

    13. [13]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    14. [14]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    15. [15]

      Haoting WangMengfan LuoYuzhong WangJialong YinHeng ZhangJia ZhaoBo Lai . Mn(Ⅱ) enhanced permanganate oxidation of trace organic pollutants in water: Critical role of in situ formation of colloidal MnO2. Chinese Chemical Letters, 2025, 36(6): 110348-. doi: 10.1016/j.cclet.2024.110348

    16. [16]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    17. [17]

      Hongjin ShiGuoyin YinXi LuYangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674

    18. [18]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    19. [19]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    20. [20]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

Metrics
  • PDF Downloads(0)
  • Abstract views(723)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return