Citation: Grace Ying En Tan, Pei Ching Oh, Kok Keong Lau, Siew Chun Low. Dispersion of Titanium(IV) Oxide Nanoparticles in Mixed Matrix Membrane Using Octaisobutyl Polyhedral Oligomeric Silsesquioxane for Enhanced CO2/CH4 Separation Performance[J]. Chinese Journal of Polymer Science, ;2019, 37(7): 654-663. doi: 10.1007/s10118-019-2246-8 shu

Dispersion of Titanium(IV) Oxide Nanoparticles in Mixed Matrix Membrane Using Octaisobutyl Polyhedral Oligomeric Silsesquioxane for Enhanced CO2/CH4 Separation Performance

  • Corresponding author: Pei Ching Oh, peiching.oh@utp.edu.my
  • Received Date: 27 November 2018
    Revised Date: 11 February 2019
    Available Online: 8 April 2019

  • Titanium(IV) oxide (TiO2) nanoparticles have been incorporated into mixed matrix membranes (MMMs) to improve gas separation performance. However, TiO2 nanoparticles tend to agglomerate due to high surface energy and van der Waals forces. This leads to precipitation which causes the formation of non-homogeneous MMM morphology. In this study, the effect of octaisobutyl polyhedral oligomeric silsesquioxane (POSS) addition on TiO2/polysulfone MMM was investigated. The aims are to enhance gas separation performance whilst preventing agglomeration of TiO2 nanoparticles. The results demonstrated that inclusion of POSS as dispersant increases MMMs’ CO2/CH4 selectivity and permeance, possibly due to less void formation and more evenly distributed pore structure. For example, synergistic addition of 5 wt% TiO2 and 5 wt% POSS increased the CO2/CH4 selectivity up to 390% compared to MMM without POSS. This is supported by elemental mapping of titanium which revealed that POSS successfully dispersed TiO2 nanoparticles and prevented aggregation. TiO2-POSS/PSf MMMs also retained their favorable thermal stability.
  • 加载中
    1. [1]

      Songolzadeh, M.; Soleimani, M.; Takht, R. M.; Songolzadeh, R. Carbon dioxide separation from flue gases: A Technological review emphasizing reduction in greenhouse gas emissions. Sci. World J. 2014, 34.  doi: 10.1155/2014/828131

    2. [2]

      Aaron, D.; Tsouris, C. Separation of CO2 from flue gas: A review. Sep. Sci. Technol. 2005, 40, 321-348.  doi: 10.1081/SS-200042244

    3. [3]

      Spillman, R., Economics of gas separation membrane processes. In Membrane Science and Technology, Chapter 13, Noble, R. D.; Stern, S. A., Eds. Elsevier, 1995; Vol. 2, pp. 589−667.

    4. [4]

      Julian, H.; Wenten, I. G. Polysulfone membranes for CO2/CH4 separation: State of the art. J. Eng. 2012, 2, 12.

    5. [5]

      Marino, T.; Russo, F.; Rezzouk, L.; Bouzid, A.; Figoli, A. PES-Kaolin mixed matrix membranes for arsenic removal from water. Membranes 2017, 7, 57.  doi: 10.3390/membranes7040057

    6. [6]

      Ursino, C.; Castro-Muñoz, R.; Drioli, E.; Gzara, L.; Albeirutty, M.; Figoli, A. Progress of nanocomposite membranes for water treatment. Membranes 2018, 8, 18.  doi: 10.3390/membranes8020018

    7. [7]

      Matteucci, S. T. Gas transport properties of reverse selective nanocomposite materials. Thesis, The University of Texas at Austin, Ann Arbor, 2007.

    8. [8]

      Ismail, A.; Kusworo, T.; Mustafa, A. B.; Hasbullah, H. Understanding the solution-diffusion mechanism in gas separation membrane for engineering students. Regional Conference on Engineering Education (RCEE), 2005, 155−159.

    9. [9]

      Goh, P. S.; Ismail, A. F.; Sanip, S. M.; Ng, B. C.; Aziz, M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol. 2011, 81, 243-264.  doi: 10.1016/j.seppur.2011.07.042

    10. [10]

      Thompson, J. A.; Chapman, K. W.; Koros, W. J.; Jones, C. W.; Nair, S. Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes. Microporous Mesoporous Mater. 2012, 158, 292-299.  doi: 10.1016/j.micromeso.2012.03.052

    11. [11]

      Fatemi, S. M.; Foroutan, M. Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation. J.l Nanostruct. Chem. 2016, 6, 29-40.  doi: 10.1007/s40097-015-0175-9

    12. [12]

      Dechnik, J.; Sumby, C. J.; Janiak, C. Enhancing mixed-matrix membrane performance with metal–organic framework additives. Cryst. Growth Des. 2017, 17, 4467-4488.  doi: 10.1021/acs.cgd.7b00595

    13. [13]

      Zornoza, B.; Seoane, B.; Zamaro, J. M.; TŽllez, C.; Coronas, J. Synergy Gas separation effects when using fillers of different natures (MOFs and zeolites) in the Same mixed matrix membrane. Procedia Engineering 2012, 44, 2118-2120.  doi: 10.1016/j.proeng.2012.09.066

    14. [14]

      Rezakazemi, M.; Ebadi Amooghin, A.; Montazer-Rahmati, M. M.; Ismail, A. F.; Matsuura, T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Prog. Polym. Sci. 2014, 39, 817-861.  doi: 10.1016/j.progpolymsci.2014.01.003

    15. [15]

      Yu, X.; Zhong, S.; Li, X.; Tu, Y.; Yang, S.; Van Horn, R. M.; Ni, C.; Pochan, D. J.; Quirk, R. P.; Wesdemiotis, C.; Zhang, W. B.; Cheng, S. Z. D. A giant surfactant of polystyrene−(carboxylic acid-functionalized polyhedral oligomeric silsesquioxane) amphiphile with highly stretched polystyrene tails in micellar assemblies. J. Am. Chem. Soc. 2010, 132, 16741-16744.  doi: 10.1021/ja1078305

    16. [16]

      Zhang, W.; Müller, A. H. E. A “click chemistry” approach to linear and star-shaped telechelic POSS-containing hybrid polymers. Macromolecule 2010, 43, 3148-3152.  doi: 10.1021/ma902830f

    17. [17]

      Zhang, W.; Müller, A. H. E. Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog. Polym. Sci. 2013, 38, 1121-1162.  doi: 10.1016/j.progpolymsci.2013.03.002

    18. [18]

      Hybrid Plastics, MS0825 – Octaisobutyl POSS. Hybrid Plastics Inc.: 2017.

    19. [19]

      Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 2008, 7, 527-538.  doi: 10.1038/nmat2206

    20. [20]

      Zhou, D.; Ji, Z.; Jiang, X.; Dunphy, D. R.; Brinker, J.; Keller, A. A. Influence of material properties on TiO2 nanoparticle agglomeration. PLoS One 2013, 8, e81239.  doi: 10.1371/journal.pone.0081239

    21. [21]

      Wheeler, P. A.; Misra, R.; Cook, R. D.; Morgan, S. E. Polyhedral oligomeric silsesquioxane trisilanols as dispersants for titanium oxide nanopowder. J. Appl. Polym. Sci. 2008, 108, 2503-2508.  doi: 10.1002/(ISSN)1097-4628

    22. [22]

      Surya, M. R.; Padaki, M.; Matsuura, T.; Abdullah, M. S.; Ismail, A. F. Polyaniline in situ modified halloysite nanotubes incorporated asymmetric mixed matrix membrane for gas separation. Sep. Purif. Technol. 2014, 132, 187-194.  doi: 10.1016/j.seppur.2014.05.020

    23. [23]

      Kuvarega, A. T.; Khumalo, N.; Dlamini, D.; Mamba, B. B. Polysulfone/N,Pd co-doped TiO2 composite membranes for photocatalytic dye degradation. Sep. Purif. Technol. 2018, 191, 122-133.  doi: 10.1016/j.seppur.2017.07.064

    24. [24]

      Guo, J.; Kim, J. Modifications of polyethersulfone membrane by doping sulfated-TiO2 nanoparticles for improving anti-fouling property in wastewater treatment. RSC Adv. 2017, 7, 33822-33828.  doi: 10.1039/C7RA06406C

    25. [25]

      Reza-E-Rabby, M.; Jeelani, S.; Rangari, V. K. Structural analysis of polyhedral oligomeric silsesquioxane coated SiC nanoparticles and their applications in thermoset polymers. Nanomater. 2015, 2015, 13.

    26. [26]

      Teoh, S. H.; Tang, Z. G.; Hastings, G. W., in Handbook of Biomaterial Properties. Springer US, 1998, p. 590.

    27. [27]

      Rafiq, S.; Man, Z.; Maitra, S.; Muhammad, N.; Ahmad, F. Kinetics of thermal degradation of polysulfone/polyimide blended polymeric membranes. J. Appl. Polym. Sci. 2012, 123, 3755-3763.  doi: 10.1002/app.v123.6

    28. [28]

      Fina, A.; Tabuani, D.; Carniato, F.; Frache, A.; Boccaleri, E.; Camino, G. Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim. Acta 2006, 440, 36-42.  doi: 10.1016/j.tca.2005.10.006

    29. [29]

      Song, L.; He, Q.; Hu, Y.; Chen, H.; Liu, L. Study on thermal degradation and combustion behaviors of PC/POSS hybrids. Polym. Degrad. Stab. 2008, 93, 627-639.  doi: 10.1016/j.polymdegradstab.2008.01.014

    30. [30]

      Dooher, T.; Dixon, D.; McIlhagger, A. Multiwalled carbon nanotube/polysulfone composites. J. Thermoplast. Compos. Mater. 2011, 24, 499-515.  doi: 10.1177/0892705710391621

    31. [31]

      Bras, M. L.; Wilkie, C. A.; Bourbigot, S., in Fire retardancy of polymers: New applications of mineral fillers. Royal Society of Chemistry, Cambridge, UK, 2005.

    32. [32]

      Liang, C. Y.; Uchytil, P.; Petrychkovych, R.; Lai, Y. C.; Friess, K.; Sipek, M.; Suen, S. Y. A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes. Sep. Purif. Technol. 2012, 92, 57-63.  doi: 10.1016/j.seppur.2012.03.016

    33. [33]

      Sadeghi, M.; Afarani, H. T.; Tarashi, Z. Preparation and investigation of the gas separation properties of polyurethane-TiO2 nanocomposite membranes. Korean J. Chem. Eng. 2015, 32, 97-103.  doi: 10.1007/s11814-014-0198-9

    34. [34]

      Løining, V. S. Enhancement of the separation performances of high free volume polymers for CO2 capture. Thesis, Norwegian University of Science and Technology, 2017.

    35. [35]

      Ghosal, K.; Freeman, B. D.; Chern, R. T.; Alvarez, J. C.; de la Campa, J. G.; Lozano, A. E.; de Abajo, J. Gas separation properties of aromatic polyamides with sulfone groups. Polymer 1995, 36, 793-800.  doi: 10.1016/0032-3861(95)93110-8

  • 加载中
    1. [1]

      Hangwen ZhengZiqian WangHuiJie ZhangJing LeiRihui LiJian YangHaiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245

    2. [2]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    3. [3]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    4. [4]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    5. [5]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    6. [6]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    7. [7]

      Fengshun WangHuachao JiZefei WuKang ChenWenqi GaoChen WangLonglu WangJianmei ChenDafeng Yan . The advanced development of one-dimensional transition metal dichalcogenide nanotubes: From preparation to application. Chinese Chemical Letters, 2025, 36(5): 109898-. doi: 10.1016/j.cclet.2024.109898

    8. [8]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    9. [9]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    10. [10]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    11. [11]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    12. [12]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    13. [13]

      Shenglan ZhouHaijian LiHongyi GaoAng LiTian LiShanshan ChengJingjing WangJitti KasemchainanJianhua YiFengqi ZhaoWengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142

    14. [14]

      Yinglan YuSajid HussainJianping QiLei LuoXuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673

    15. [15]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    16. [16]

      Kai YeZhicheng YeChuantao WangZhilai LuoCheng LianChunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033

    17. [17]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    18. [18]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    19. [19]

      Sushu Zhang Yang Yang Jingyu Wang . Pyridinic nitrogen-substituted graphene membranes for exceptional CO2 capture. Chinese Journal of Structural Chemistry, 2025, 44(2): 100440-100440. doi: 10.1016/j.cjsc.2024.100440

    20. [20]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

Metrics
  • PDF Downloads(0)
  • Abstract views(766)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return