Citation: Jin-Yan Hou, Fang Guo, Qian Hu, Yang Li, Zhao-Min Hou. Neodymium-catalyzed Polymerization of C5 Fraction: Efficient Synthesis of 1,3-Pentadiene-isoprene Copolymer Rubbers[J]. Chinese Journal of Polymer Science, ;2019, 37(7): 674-680. doi: 10.1007/s10118-019-2244-x shu

Neodymium-catalyzed Polymerization of C5 Fraction: Efficient Synthesis of 1,3-Pentadiene-isoprene Copolymer Rubbers

  • Corresponding author: Fang Guo, guofang@dlut.edu.cn
  • Received Date: 16 January 2019
    Revised Date: 10 February 2019
    Available Online: 26 March 2019

  • The polymerization of C5 fraction without separation and concentration by using a commercial available Nd(P204)3/AliBu3/AlEt2Cl has afforded for the first time a new kind of 1,3-pentadiene-isoprene random copolymers as rubber materials. Isoprene (IP) and E-1,3-pentadiene (EPD) acted as polymerization monomers, cyclopentadiene acted as poison, and other substances like alkanes, monoolefins, Z-1,3-pentadiene acted as solvents in this multicomponent C5 fraction polymerization system. The data of kinetic experiments, NMR, and DSC indicated that the polymerization of C5 fraction by Nd(P204)3/AliBu3/AlEt2Cl afforded the IP-EPD random copolymers. By controlling polymerization conditions such as [Al]/[Nd]/[Cl] molar ratio and polymerization temperature, the random EPD-IP copolymers containing high cis-1,4-poly(IP) (with selectivity 96%) and moderate cis-1,4-poly(EPD) (with selectivity 60%) units with a low glass transition temperature (about −60 °C), controllable molecular weight (Mn = 3.8 × 104‒14.3 × 104), and moderate molecular weight distribution (Mw/Mn = 2.17‒2.78) were obtained in a high yield.
  • 加载中
    1. [1]

      Fang, J. Research progress for the separation method of C5 fraction and development direction of its downstream products. Mod. Chem. Ind. 2018, 32, 39-42.

    2. [2]

      Liu, D. L.; Guo, L. H.; Chi, Q. H.; Zhang, D. S. Comprehensive utilization of C5 resource. Sci. & Techno. Chem. Ind. 2005, 13, 58-61.

    3. [3]

      Li, X. G.; Gong, S. H.; Liu, Y.; Zhang, Y. Comprehensive utilization of C5 fraction. Tianjin Chem. Ind. 2005, 13, 58-61.

    4. [4]

      Guo, L.; Li, D. F.; Wang, J. F. Progresses in the separation of steam cracking C5 fraction at home. Petrochem. Techno. 2015, 44, 252-260.

    5. [5]

      Wang, J.; Gao, Z.; Qi, Y. Initiator/TiCl4 initiated cationic polymerization of pyrolysis gasoline distillate. RSC Adv. 2014, 47, 24852-24858.

    6. [6]

      Petrova, L. M.; Abbakumova, N. A.; Foss, T. R.; Romanov, G. V. Structural features of asphaltene and petroleum resin fractions. Pet. Chem. 2011, 51, 252-256.  doi: 10.1134/S0965544111040062

    7. [7]

      Wang, D.; Pan, Y.; Zhang H. A quantum chemistry study on structural properties of petroleum resin. Pet. Sci. 2007, 4, 89-93.  doi: 10.1007/BF03187461

    8. [8]

      Zhou, X.; Zhang, P.; Li, Z. Miscibility behavior of ethylene/vinyl acetate and C5 petroleum resin by FTIR imaging. Anal. Sci. 2007, 23, 877-880.  doi: 10.2116/analsci.23.877

    9. [9]

      Liang, J.; Chang, S.; Feng, N. Effect of C5 petroleum resin content on damping behavior, morphology, and mechanical propenies of BIIR/BR vulcanizates. J. Appl. Polym. Sci. 2013, 130, 510-515.  doi: 10.1002/app.39202

    10. [10]

      Wang, G. Q.; Zhang, W. X.; Liang, J. C.; Chen, G. Y.; Wei, Z. Y.; Zhang, L. Preparation of C5 petroleum resins using Et3NHCl-AlCl3 as catalyst. Asian J. Chem. 2013, 25, 2829-2832.  doi: 10.14233/ajchem

    11. [11]

      Lopez-sanchez, J. A.; Lamberti, M.; Pappalardo, D.; Pellecchia, C. Polymerization of conjugated dienes promoted by bis(phenoxyimino)titanium catalysts. Macromolecules 2003, 36, 9260-9263.  doi: 10.1021/ma035038l

    12. [12]

      Ricci, G.; Italia, S.; Porri, L. Polymerization of (Z)1-,3-pentadiene with CpTiCl3/MAO. effect of temperature on polymer structure and mechanistic implications. Macromolecules 1994, 27, 868-869.  doi: 10.1021/ma00081a037

    13. [13]

      Purevsuren, B.; Allegra, G.; Stefano, V. M.; Farina, A.; Porri, L.; Ricci, G. Cis-isotactic 1,4-polypentadiene. NMR solution charaterization and crystal structure of polymers prepared with neodymium-catalyic systems. Polym. J. 1998, 30, 431-434.  doi: 10.1295/polymj.30.431

    14. [14]

      Ricci, G.; Battistella, M.; Porri, L. Chemoselectivity and stereospecificity of chromium(II) catalysts for 1,3-diene polymerization. Macromolecules 2001, 34, 5766-5769.  doi: 10.1021/ma010247w

    15. [15]

      Costabile, C.; Guerra, G.; Longo, P.; Pragliola, S. High selectivity in polymerization of (Z)-1,3-pentadiene, with the CpTiCl3-MAO catalytic system, generated by backbiting coordinations of the growing polydienyl chain. Macromolecules 2004, 37, 2016-2020.  doi: 10.1021/ma035892c

    16. [16]

      Ricci, G.; Forni, A.; Boglia, A.; Motta, T.; Zannoni, G.; Canetti, M.; Bertini F. Synthesis and X-ray structure of CoCl2(PiPrPh2)2. A new highly active and stereospecific catalyst for 1,2 polymerization of conjugated dienes when used in association with MAO. Macromolecules 2005, 38, 1064-1070.  doi: 10.1021/ma0476083

    17. [17]

      Ricci, G.; Alberti, E.; Zetta, L.; Motta, T.; Bertini, F.; Mendichi, R.; Arosio, P.; Famulari, A.; Meille, S. V. Synthesis, characterization and molecular conformation of syndiotactic 1,2-polypentadiene: The cis polymer. Macromolecules. 2005, 38, 8353-8361.  doi: 10.1021/ma047604y

    18. [18]

      Ricci, G.; Motta, T.; Boglia, A.; Alberti, E.; Arosio, P.; Famulari, A.; Meille, S. V. Synthesis, characterization, and crystalline structure of syndiotactic 1,2-polypentadiene: The trans polymer. Macromolecules 2005, 38, 8345-8352.  doi: 10.1021/ma047605q

    19. [19]

      Costabile, C.; Guerra, G.; Longo, P.; Pragliola, S. Activity and microstructure variations with temperature in conjugated diene polymerizations catalyzed by CpTiCl3-MAO. Macromolecules 2005, 38, 6327-6335.  doi: 10.1021/ma0504926

    20. [20]

      Costabile, C.; Capacchione, C.; Saviello, D.; Proto, A. Mechanistic studies on conjugated diene polymerizations promoted by a titanium complex containing a tetradentate [OSSO]-type bis(phenolato) ligand. Macromolecules 2012, 45, 6363-6370.  doi: 10.1021/ma3011697

    21. [21]

      Jia, X.; Hu, Y. M.; Dai, Q. Q.; Bi, J. F.; Bai, C. X.; Zhang, X. Q. Synthesis of syndiotactic cis-1,4-polypentadiene by using ternary neodymium-based catalyst. Polymer 2013, 2973-2978.

    22. [22]

      Nishii, K.; Kang, X.; Nishiura, M.; Luo, Y.; Hou, Z. Regio- and stereospecific living polymerization and copolymerization of (E)-1,3-pentadiene with 1,3-butadiene by half-sandwich scandium catalystst. Dalton Trans. 2013, 42, 9030-9032.  doi: 10.1039/c3dt50357g

    23. [23]

      Liu, K.; He, Q.; Ren, L.; Xu, F.; Xu W. J. Living anionic polymerization of (E)-1,3-pentadiene and (Z)-1,3-pentadiene isomers. J. Polym. Sci., A: Polym. Chem. 2016, 54, 2291-2301.  doi: 10.1002/pola.28100

    24. [24]

      Porri, L.; Carbonaro, A.; Ciampelli, F. Copolymerization of 1,3-butadiene and 1,3-pentadiene with homogeneous Al (C2H5)2Cl-Vanadium compounds catalyst system. 1. Preparation and properties of the copolymers. Makromol. Chem. 1963, 61 90-103.  doi: 10.1002/macp.1963.020610109

    25. [25]

      Loria, M.; Proto, A.; Capacchione, C. Styrene-isoprene and styrene-1,3-pentadiene copolymerisation catalyzed by titanium [OSSO]-type catalysts. RSC Adv. 2015, 5, 65998-66004.  doi: 10.1039/C5RA11866B

    26. [26]

      Longo, P.; Proto, A.; Oliva, P.; Sessa, I.; Zambelli, A. Copolymerization of styrene with (Z)-1,3-pentadiene in the presence of a syndiotactic-specific catalyst. J. Polym. Sci. A: Polym. Chem. 1997, 35, 2697-2702.  doi: 10.1002/(ISSN)1099-0518

    27. [27]

      Wang, Y.; Ma, H. Rare earth catalytic synthesis of rubber. Chem. Commun. 2012, 48, 6729-6731.  doi: 10.1039/c2cc31716h

    28. [28]

      Qiang, X.; Li, L.; Guo, F.; Shi, Z.; Ma, H.; Wang, Y.; Wang, Y.; Li, Y. Terpolymer of neodymiun-catalyzed styrene, isoprene and butadiene: Efficient synthesis of integral rubber containing atactic styrene-styrene sequences and high cis-1,4 polyconjugated-olefins. Polym. Eng. Sci. 2014, 54, 1858-1963.  doi: 10.1002/pen.v54.8

    29. [29]

      Bryan, S. B.; Gabriel, E. S.; Nathaniel, A. L. Simple and accurate determination of reactivity ratios using a nonterminal model of chain copolymerization. Macromolecules 2015, 48, 6922-6930.  doi: 10.1021/acs.macromol.5b01631

    30. [30]

      Zhang, L. X.; Luo, Y.; Hou, Z. Unprecedented isospecific 3,4-polymerization of isoprene by cationic rare earth metal alkyl species resulting from a binuclear precursor. J. Am. Chem. Soc. 2015, 127, 14562-14563.

    31. [31]

      Zhang, J. C.; Xue, Z. H. A comparative study on the properties of eucommia ulmoides gum and synthetic trans-1,4-polyisoprene. Polym. Test. 2011, 30, 753-759.  doi: 10.1016/j.polymertesting.2011.06.010

    32. [32]

      Guo, F.; Meng, R.; Li, Y.; Hou, Z. Highly cis-1,4-selective terpolymerization of 1,3-butadiene and isoprene with styrene by a C5H5-ligated scandium catalyst. Polymer 2015, 76 159-167.  doi: 10.1016/j.polymer.2015.08.060

  • 加载中
    1. [1]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    2. [2]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    3. [3]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    4. [4]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    5. [5]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

    6. [6]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    7. [7]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    8. [8]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    9. [9]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    10. [10]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Yan LuoYan-Jiao LuMei-Mei PanYu-Feng LiangWei-Min ShiChun-Hua ChenCui LiangGui-Fa SuDong-Liang Mo . Rapidly diastereoselective assembly of ten-membered N-heterocycles between two 1,3-dipoles and their diversity to access fused N-heterocycles. Chinese Chemical Letters, 2025, 36(5): 110207-. doi: 10.1016/j.cclet.2024.110207

    13. [13]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    14. [14]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    15. [15]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    16. [16]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    17. [17]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    18. [18]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    19. [19]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    20. [20]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

Metrics
  • PDF Downloads(0)
  • Abstract views(821)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return