Citation: Zhi-Fei Zhang, Kun Yang, Shu-Gao Zhao, Lai-Na Guo. Self-healing Behavior of Ethylene Propylene Diene Rubbers Based on Ionic Association[J]. Chinese Journal of Polymer Science, ;2019, 37(7): 700-707. doi: 10.1007/s10118-019-2241-0 shu

Self-healing Behavior of Ethylene Propylene Diene Rubbers Based on Ionic Association

  • Corresponding author: Kun Yang, yangkun1463@126.com Shu-Gao Zhao, zhaosgqd@hotmail.com
  • Received Date: 25 December 2018
    Revised Date: 19 February 2019
    Accepted Date: 1 January 2018
    Available Online: 4 April 2019

  • To meet the increasing demand for safe, environmentally friendly and high-performance smart materials, self-healing rubbers are highly desired. Here, the self-healing performance of ethylene propylene diene monomer rubber (EPDM) is reported, which was designed by graft-polymerization of zinc dimethacrylate (ZDMA) onto rubber chains to form a reversible ionic cross-linked network. Single ionic cross-linked network and dual network, combining covalent and ionic cross-links, could be tuned by controlling vulcanization process to achieve tailorable mechanical and self-healing properties. It was found that ionic cross-linked EPDM showed a recovery of more than 95% of the original mechanical strength through a healing process of 1 h at 100 °C. The covalent cross-links could improve mechanical properties but block self-healing. Adding 50 wt% liquid rubber to “dry” EPDM could effectively enhance self-healing capability of the dual cross-linked network and the healed tensile strength could reach 0.9 MPa. A compromise between mechanical performance and healing capability could be potentially tailored by controlling vulcanization process and liquid rubber content.
  • 加载中
    1. [1]

      Vélez, J. S.; Velásquez, S.; Giraldo, D. Mechanical and rheometric properties of gilsonite/carbon black/natural rubber compounds cured using conventional and efficient vulcanization systems. Polym. Test. 2016, 56, 1-9.  doi: 10.1016/j.polymertesting.2016.09.005

    2. [2]

      Hosseini, S. M.; Razzaghi-Kashani, M. On the role of nano-silica in the kinetics of peroxide vulcanization of ethylene propylene diene rubber. Polymer 2017, 133, 8-19.  doi: 10.1016/j.polymer.2017.10.061

    3. [3]

      Movahed, S. O.; Ansarifar, A.; Zohuri, G.; Ghaneie, N.; Kermany, Y. Devulcanization of ethylene-propylene-diene waste rubber by microwaves and chemical agents. J. Elastomer Plast. 2014, 48(2), 122-144.

    4. [4]

      Yu, B. C.; Jung, J. W.; Park, K.; Goodenough, J. B. A new approach for recycling waste rubber products in Li-S batteries. Energ. Environ. Sci. 2017, 10(1), 86-90.  doi: 10.1039/C6EE02770A

    5. [5]

      Molanorouzi, M.; Mohaved, S. O. Reclaiming waste tire rubber by an irradiation technique. Polym. Degrad. Stabil. 2016, 128(C), 115-125.

    6. [6]

      Keller, M. W.; White, S. R.; Sottos, N. R. A self-healing poly(dimethyl siloxane) elastomer. Adv. Funct. Mater. 2007, 17(14), 2399-2404.  doi: 10.1002/(ISSN)1616-3028

    7. [7]

      Chowdhury, R. A.; Hosur, M. V.; Nuruddin, M.; Tcherbi-Narteh, A.; Kumar, A.; Boddu, V.; Jeelani, S. Self-healing epoxy composites: preparation, characterization and healing performance. J. Mater. Res. Technol. 2015, 4(1), 33-43.  doi: 10.1016/j.jmrt.2014.10.016

    8. [8]

      Pepels, M.; Filot, I.; Klumperman, B.; Goossens, H. Self-healing systems based on disulfide-thiol exchange reactions. Polym. Chem. 2013, 4(18), 4955-11.  doi: 10.1039/c3py00087g

    9. [9]

      Guo, Y. K.; Li, H.; Zhao, P. X.; Wang, X. F.; Astruc, D.; Shuai, M. B. Thermo-reversible MWCNTs/epoxy polymer for use in self-healing and recyclable epoxy adhesive. Chinese J. Polym. Sci 2017, 35(6), 728-738.  doi: 10.1007/s10118-017-1920-y

    10. [10]

      Kang, J.; Son, D.; Wang, G. J. N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh, J. Y.; Katsumata, T.; Mun, J.; Lee, Y.; Jin, L.; Tok, J. B. H.; Bao, Z. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 2018, 15, 1706846.

    11. [11]

      Liu, X.; Lu, C.; Wu, X.; Zhang, X. Self-healing strain sensors based on nanostructured supramolecular conductive elastomers. J. Mater. Chem. A 2017, 5(20), 9824-9832.  doi: 10.1039/C7TA02416A

    12. [12]

      Luan, Y. G.; Zhang, X. A.; Jiang, S. L.; Chen, J. H.; Lyu, Y. F. Self-healing supramolecular polymer composites by hydrogen bonding interactions between hyperbranched polymer and graphene oxide. Chinese J. Polym. Sci. 2018, 36(5), 584-591.  doi: 10.1007/s10118-018-2025-y

    13. [13]

      Liu, J.; Liu, J.; Wang, S.; Huang, J.; Wu, S.; Tang, Z.; Guo, B.; Zhang, L. An advanced elastomer with an unprecedented combination of excellent mechanical properties and high self-healing capability. J. Mater. Chem. A 2017, 5(48), 25660-25671.  doi: 10.1039/C7TA08255J

    14. [14]

      Jia, X. Y.; Mei, J. F.; Lai, J. C.; Li, C. H.; You, X. Z. A highly stretchable polymer that can be thermally healed at mild temperature. Macromol. Rapid Commun. 2016, 37(12), 952-956.  doi: 10.1002/marc.v37.12

    15. [15]

      Rahman, M. A.; Penco, M.; Peroni, I.; Ramorino, G.; Grande, A. M.; Di Landro, L. Self-repairing systems based on ionomers and epoxidized natural rubber blends. ACS Appl. Mater. Interfaces 2011, 3(12), 4865-4874.  doi: 10.1021/am201417h

    16. [16]

      García-Huete, N.; Post, W.; Laza, J. M.; Vilas, J. L.; León, L. M.; García, S. J. Effect of the blend ratio on the shape memory and self-healing behaviour of ionomer-polycyclooctene cross-linked polymer blends. Eur. Polym. J. 2018, 98, 154-161.  doi: 10.1016/j.eurpolymj.2017.11.006

    17. [17]

      Das, A.; Sallat, A.; Böhme, F.; Suckow, M.; Basu, D.; Wießner, S.; Stöckelhuber, K. W.; Voit, B.; Heinrich, G. Ionic modification turns commercial rubber into a self-healing material. ACS Appl. Mater. Interfaces 2015, 7(37), 20623-20630.  doi: 10.1021/acsami.5b05041

    18. [18]

      Li, C.-H.; Wang, C.; Keplinger, C.; Zuo, J.-L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; You, X. Z.; Bao, Z. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8(6), 618-624.  doi: 10.1038/nchem.2492

    19. [19]

      Chen, Y.; Kushner, A. M.; Williams, G. A.; Guan, Z. Multiphase design of autonomic self-Healing thermoplastic elastomers. Nat. Chem. 2012, 4(6), 467-472.  doi: 10.1038/nchem.1314

    20. [20]

      Kalista, S. J., Jr.; Ward, T. C.; Oyetunji, Z. Self-healing of poly(ethylene-co-methacrylic acid) copolymers following projectile puncture. Mech. Adv. Mater. Struc. 2007, 14(5), 391-397.  doi: 10.1080/15376490701298819

    21. [21]

      Zhong, M.; Liu, Y. T.; Xie, X. M. Self-healable, super tough graphene oxide-poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. J. Mater. Chem. B 2015, 3(19), 4001-4008.  doi: 10.1039/C5TB00075K

    22. [22]

      Xu, C.; Cao, L.; Lin, B.; Liang, X.; Chen, Y. Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization. ACS Appl. Mater. Interfaces 2016, 8(27), 17728-17737.  doi: 10.1021/acsami.6b05941

    23. [23]

      Zhang, J.; Huo, M.; Li, M.; Li, T.; Li, N.; Zhou, J.; Jiang, J. Shape memory and self-healing materials from supramolecular block polymers. Polymer 2018, 134, 35-43.  doi: 10.1016/j.polymer.2017.11.043

    24. [24]

      Miwa, Y.; Kurachi, J.; Kohbara, Y.; Kutsumizu, S. Dynamic ionic cross-links enable high strength and ultrastretchability in a single elastomer. Commun. Chem. 2018.

    25. [25]

      Peng, Z.; Liang, X.; Zhang, Y.; Zhang, Y. Reinforcement of EPDM by in situ prepared zinc dimethacrylate. J. Appl. Polym. Sci. 2002, 84(7), 1339-1345.  doi: 10.1002/(ISSN)1097-4628

    26. [26]

      Nie, Y.; Huang, G.; Qu, L.; Zhang, P.; Weng, G.; Wu, J. Cure kinetics and morphology of natural rubber reinforced by the in situpolymerization of zinc dimethacrylate. J. Appl. Polym. Sci. 2010, 115(1), 99-106.  doi: 10.1002/app.v115:1

    27. [27]

      Chen, Y.; Xu, C. Cross-link network evolution of nature rubber/zinc dimethacrylate composite during peroxide vulcanization. Polym. Composite. 2011, 32(10), 1505-1514.  doi: 10.1002/pc.v32.10

    28. [28]

      Xu, C.; Huang, X.; Li, C.; Chen, Y.; Lin, B.; Liang, X. Design of “Zn2+ salt-bondings” cross-linked carboxylated styrene butadiene rubber with reprocessing and recycling ability via rearrangements of ionic cross-linkings. ACS Sustain. Chem. Eng. 2016, 4(12), 6981-6990.  doi: 10.1021/acssuschemeng.6b01897

    29. [29]

      Xu, C.; Cao, L.; Huang, X.; Chen, Y.; Lin, B.; Fu, L. Self-healing natural rubber with tailorable mechanical properties based on ionic supramolecular hybrid network. ACS Appl. Mater. Interfaces 2017, 9(34), 29363-29373.  doi: 10.1021/acsami.7b09997

    30. [30]

      Wang, D.; Guo, J.; Zhang, H.; Cheng, B.; Shen, H.; Zhao, N.; Xu, J. Intelligent rubber with tailored properties for self-healing and shape memory. J. Mater. Chem. A 2015, 3, 12864-12872.  doi: 10.1039/C5TA01915J

    31. [31]

      Cao, L.; Huang, J.; Chen, Y. Dual cross-linked epoxidized natural rubber reinforced by tunicate cellulose nanocrystals with improved strength and extensibility. ACS Sustain. Chem. Eng. 2018, 6(11), 14802-14811.  doi: 10.1021/acssuschemeng.8b03331

    32. [32]

      Xu, C.; Cui, R.; Fu, L.; Lin, B. Recyclable and heat-healable epoxidized natural rubber/bentonite composites. Compos. Sci. Technol. 2018, 167, 421-430.  doi: 10.1016/j.compscitech.2018.08.027

    33. [33]

      Flory, P. J. Statistical mechanics of swelling of network structures. J. Chem. Phys. 1950, 18(1), 108-111.  doi: 10.1063/1.1747424

    34. [34]

      Bala, P.; Samantaray, B. K.; Srivastava, S. K.; Nando, G. B. Organomodified montmorillonite as filler in natural and synthetic rubber. J. Appl. Polym. Sci. 2004, 92(6), 3583-3592.  doi: 10.1002/(ISSN)1097-4628

    35. [35]

      Liu, X. Y.; Zhong, M.; Shi, F. K.; Xu, H.; Xie, X. M. Multi-bond network hydrogels with robust mechanical and self-healable properties. Chinese J. Polym. Sci. 2017, 35(10), 1253-1267.  doi: 10.1007/s10118-017-1971-0

    36. [36]

      Yarmohammadi, M.; Shahidzadeh, M.; Ramezanzadeh, B. Designing an elastomeric polyurethane coating with enhanced mechanical and self-healing properties- the influence of disulfide chain extender. Prog. Org. Coat. 2018, 121, 45-52.  doi: 10.1016/j.porgcoat.2018.04.009

    37. [37]

      Wool, R. P.; O’Connor, K. M. A Theory crack healing in polymers. J. Appl. Phys. 1981, 52(10), 5953-5963.  doi: 10.1063/1.328526

  • 加载中
    1. [1]

      Salim UllahJianliang ShenHong-Tao Xu . Innovative self-healing conductive organogel: Pioneering the future of electronics. Chinese Chemical Letters, 2025, 36(3): 110553-. doi: 10.1016/j.cclet.2024.110553

    2. [2]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

    3. [3]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    4. [4]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    5. [5]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    6. [6]

      Saadullah KhattakHong-Tao XuJianliang Shen . Bio-electronic bandage: Self-powered performances to accelerate intestinal wound healing. Chinese Chemical Letters, 2024, 35(12): 110210-. doi: 10.1016/j.cclet.2024.110210

    7. [7]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    8. [8]

      Xu QuPengzhao WuKaixuan DuanGuangwei WangLiang-Liang GaoYuan GuoJianjian ZhangDonglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681

    9. [9]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    10. [10]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    11. [11]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    12. [12]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    13. [13]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    14. [14]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    15. [15]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    16. [16]

      Jingyu ShiXiaofeng WuYutong ChenYi ZhangXiangyan HouRuike LvJunwei LiuMengpei JiangKeke HuangShouhua Feng . Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chinese Chemical Letters, 2025, 36(5): 109938-. doi: 10.1016/j.cclet.2024.109938

    17. [17]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    18. [18]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    19. [19]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    20. [20]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

Metrics
  • PDF Downloads(0)
  • Abstract views(790)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return