Evolution of Conformation and Dynamics of Solvents in Hydration Shell along the Urea-induced Unfolding of Ubiquitin
- Corresponding author: Feng-Chao Cui, fccui@ciac.ac.cn Yun-Qi Li, yunqi@ciac.ac.cn
Citation:
Ke-Cheng Yang, Feng-Chao Cui, Ce Shi, Wen-Duo Chen, Yun-Qi Li. Evolution of Conformation and Dynamics of Solvents in Hydration Shell along the Urea-induced Unfolding of Ubiquitin[J]. Chinese Journal of Polymer Science,
;2019, 37(7): 708-718.
doi:
10.1007/s10118-019-2238-8
Schlesinger, D. H.; Goldstein, G. Molecular conservation of 74 amino acid sequence of ubiquitin between cattle and man. Nature 1975, 255, 423-424.
doi: 10.1038/255423a0
Goldstein, G.; Scheid, M.; Hammerling, U.; Schlesinger, D. H.; Niall, H. D.; Boyse, E. A. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc. Natl. Acad. Sci. USA 1975, 72, 11-5.
doi: 10.1073/pnas.72.1.11
Hershko, A.; Eytan, E.; Ciechanover, A.; Haas, A. L. Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins. J. Biol. Chem. 1982, 257, 13964-70.
Vijay-Kumar, S.; Bugg, C. E.; Cook, W. J. Structure of ubiquitin refined at 1.8 Å resolution. J. Mol. Biol. 1987, 194, 531-544.
doi: 10.1016/0022-2836(87)90679-6
Sillitoe, I.; Lewis, T. E.; Cuff, A.; Das, S.; Ashford, P.; Dawson, N. L.; Furnham, N.; Laskowski, R. A.; Lee, D.; Lees, J. G.; Lehtinen, S.; Studer, R. A.; Thornton, J.; Orengo, C. A. CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res. 2015, 43, D376-D381.
doi: 10.1093/nar/gku947
Reddy, G.; Thirumalai, D. Collapse precedes folding in denaturant-dependent assembly of ubiquitin. J. Phys. Chem. B 2017, 121, 995-1009.
doi: 10.1021/acs.jpcb.6b13100
Piana, S.; Lindorff-Larsen, K.; Shaw, D. E. Atomic-level description of ubiquitin folding. Proc. Natl. Acad. Sci. USA 2013, 110, 5915-5920.
doi: 10.1073/pnas.1218321110
Makhatadze, G. I.; Lopez, M. M.; Richardson, J. M.; Thmos, S. T. Anion binding to the ubiquitin molecule. Protein Sci. 1998, 7, 689-697.
doi: 10.1002/pro.5560070318
Jacob, J.; Krantz, B.; Dothager, R. S.; Thiyagarajan, P.; Sosnick, T. R. Early collapse is not an obligate step in protein folding. J. Mol. Biol. 2004, 338, 369-82.
doi: 10.1016/j.jmb.2004.02.065
Wirmer, J.; Peti, W.; Schwalbe, H. Motional properties of unfolded ubiquitin: a model for a random coil protein. J. Biomol. NMR 2006, 35, 175-186.
Walters, J.; Milam, S. L.; Clark, A. C. Practical approaches to protein folding and assembly: Spectroscopic strategies in thermodynamics and kinetics. In Methods Enzymol., ed. by Michael L. Johnson, J. M. H., Gary K. Ackers, Academic Press, 2009, Vol. 455, pp. 1-39.
Vallée-Bélisle, A.; Michnick, S. W. Visualizing transient protein-folding intermediates by tryptophan-scanning mutagenesis. Nat. Struct. Mol. Biol. 2012, 19, 731-736.
doi: 10.1038/nsmb.2322
Aznauryan, M.; Delgado, L.; Soranno, A.; Nettels, D.; Huang, J. R.; Labhardt, A. M.; Grzesiek, S.; Schuler, B. Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS. Proc. Natl. Acad. Sci. USA 2016, 113, E5389-E5398.
doi: 10.1073/pnas.1607193113
Esteban-Martín, S.; Fenwick, R. B.; Salvatella, X. Refinement of ensembles describing unstructured proteins using NMR residual dipolar couplings. J. Am. Chem. Soc. 2010, 132, 4626-4632.
doi: 10.1021/ja906995x
Mandal, M.; Mukhopadhyay, C. Microsecond molecular dynamics simulation of guanidinium chloride induced unfolding of ubiquitin. Phys. Chem. Chem. Phys. 2014, 16, 21706-21716.
doi: 10.1039/C4CP01657B
Hua, L.; Zhou, R.; Thirumalai, D.; Berne, B. J. Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. Proc. Natl. Acad. Sci. USA 2008, 105, 16928-16933.
doi: 10.1073/pnas.0808427105
Stirnemann, G.; Kang, S. G.; Zhou, R.; Berne, B. J. How force unfolding differs from chemical denaturation. Proc. Natl. Acad. Sci. USA 2014, 111, 3413-3418.
doi: 10.1073/pnas.1400752111
Shaw, K. L.; Scholtz, J. M.; Pace, C. N.; Grimsley, R. G. in Protein structure, stability, and interactions. Vol. 490, ed. by Shriver, J. W. Humana Press, Totowa, NJ, 2009, p. 41−55.
Tanford, C. Isothermal unfolding of globular proteins in aqueous urea solutions. J. Am. Chem. Soc. 1964, 86, 2050-2059.
doi: 10.1021/ja01064a028
Canchi, D. R.; García, A. E. Cosolvent effects on protein stability. Annu. Rev. Phys. Chem. 2013, 64, 273-293.
doi: 10.1146/annurev-physchem-040412-110156
Guinn, E. J.; Pegram, L. M.; Capp, M. W.; Pollock, M. N.; Record, M. T. Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer. Proc. Natl. Acad. Sci. USA 2011, 108, 16932-16937.
doi: 10.1073/pnas.1109372108
Frank, H. S.; Franks, F. Structural approach to the solvent power of water for hydrocarbons: Urea as a structure breaker. J. Chem. Phys. 1968, 48, 4746-4757.
doi: 10.1063/1.1668057
Nayar, D.; Folberth, A.; van der Vegt, N. F. A. Molecular origin of urea driven hydrophobic polymer collapse and unfolding depending on side chain chemistry. Phys. Chem. Chem. Phys. 2017, 19, 18156-18161.
doi: 10.1039/C7CP01743J
O'Brien, E. P.; Dima, R. I.; Brooks, B.; Thirumalai, D. Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism. J. Am. Chem. Soc. 2007, 129, 7346-7353.
doi: 10.1021/ja069232+
Stumpe, M. C.; Grubmüller, H. Polar or apolar—The role of polarity for urea-induced protein denaturation. PLoS Comp. Biol. 2008, 4, e1000221.
doi: 10.1371/journal.pcbi.1000221
Candotti, M.; Pérez, A.; Ferrer-Costa, C.; Rueda, M.; Meyer, T.; Gelpí, J. L.; Orozco, M. Exploring early stages of the chemical unfolding of proteins at the proteome scale. PLoS Comp. Biol. 2013, 9, e1003393.
doi: 10.1371/journal.pcbi.1003393
Stumpe, M. C.; Grubmüller, H. Urea impedes the hydrophobic collapse of partially unfolded proteins. Biophys. J. 2009, 96, 3744-3752.
doi: 10.1016/j.bpj.2009.01.051
Canchi, D. R.; García, Angel E. Backbone and side-chain contributions in protein denaturation by urea. Biophys. J. 2011, 100, 1526-1533.
doi: 10.1016/j.bpj.2011.01.028
Smolin, N.; Voloshin, V. P.; Anikeenko, A. V.; Geiger, A.; Winter, R.; Medvedev, N. N. TMAO and urea in the hydration shell of the protein SNase. Phys. Chem. Chem. Phys. 2017, 19, 6345-6357.
doi: 10.1039/C6CP07903B
Yang, K.; Cui, F.; Li, Y. Distribution and dynamics of water and urea in hydration shell of ribonuclease Sa: A molecular dynamics simulation study. Chinese Journal of Applied Chemistry 2018, 35, 1243-1248.
Biedermannová, L.; Schneider, B. Hydration of proteins and nucleic acids: Advances in experiment and theory. A review. BBA-GEN SUBJECTS 2016, 1860, 1821-1835.
doi: 10.1016/j.bbagen.2016.05.036
Gavrilov, Y.; Leuchter, J. D.; Levy, Y. On the coupling between the dynamics of protein and water. Phys. Chem. Chem. Phys. 2017, 19, 8243-8257.
doi: 10.1039/C6CP07669F
Del Galdo, S.; Amadei, A. The unfolding effects on the protein hydration shell and partial molar volume: a computational study. Phys. Chem. Chem. Phys. 2016, 18, 28175-28182.
doi: 10.1039/C6CP05029H
Moron, M. C. Water dynamics on the surface of the protein barstar. Phys. Chem. Chem. Phys. 2012, 14, 15393-15399.
doi: 10.1039/c2cp41702b
Yang, K.; Różycki, B.; Cui, F.; Shi, C.; Chen, W.; Li, Y. Sampling enrichment toward target structures using hybrid molecular dynamics-Monte Carlo simulations. PLoS One 2016, 11, e0156043.
doi: 10.1371/journal.pone.0156043
Hu, J.; Ma, A.; Dinner, A. R. Monte Carlo simulations of biomolecules: The MC module in CHARMM. J. Comput. Chem. 2006, 27, 203-216.
doi: 10.1002/(ISSN)1096-987X
Vitalis, A.; Pappu, R. V. Methods for Monte Carlo simulations of biomacromolecules. In Annual reports in computational chemistry, Ralph, A. W., Ed. Elsevier, 2009, Vol. 5, pp. 49-76.
MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102, 3586-3616.
doi: 10.1021/jp973084f
Mackerell, A. D.; Feig, M.; Brooks, C. L. Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 2004, 25, 1400-1415.
doi: 10.1002/jcc.v25:11
Li, Y. Q.; Zhang, Y. REMO: A new protocol to refine full atomic protein models from C-alpha traces by optimizing hydrogen-bonding networks. Proteins: Struct. Funct. Bioinform. 2009, 76, 665-674.
doi: 10.1002/prot.v76:3
Frishman, D.; Argos, P. Knowledge-based protein secondary structure assignment. Proteins: Struct. Funct. Bioinform. 1995, 23, 566-79.
doi: 10.1002/(ISSN)1097-0134
Im, W.; Lee, M. S.; Brooks, C. L. Generalized born model with a simple smoothing function. J. Comput. Chem. 2003, 24, 1691-1702.
doi: 10.1002/(ISSN)1096-987X
Weiser, J.; Shenkin, P. S.; Still, W. C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J. Comput. Chem. 1999, 20, 217-230.
doi: 10.1002/(ISSN)1096-987X
Tsodikov, O. V.; Record, M. T.; Sergeev, Y. V. Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. J. Comput. Chem. 2002, 23, 600-609.
doi: 10.1002/(ISSN)1096-987X
Schneidman-Duhovny, D.; Hammel, M.; Sali, A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 2010, 38, W540-W544.
doi: 10.1093/nar/gkq461
Valentini, E.; Kikhney, A. G.; Previtali, G.; Jeffries, C. M.; Svergun, D. I. SASBDB, a repository for biological small-angle scattering data. Nucleic Acids Res. 2015, 43, D357-63.
doi: 10.1093/nar/gku1047
Huang, J. R.; Gabel, F.; Jensen, M. R.; Grzesiek, S.; Blackledge, M. Sequence-specific mapping of the interaction between urea and unfolded ubiquitin from ensemble analysis of NMR and small angle scattering data. J. Am. Chem. Soc. 2012, 134, 4429-4436.
doi: 10.1021/ja2118688
Ribeiro, A. A.; de Alencastro, R. B. Mixed Monte Carlo/molecular dynamics simulations of the prion protein. J. Mol. Graph. Model. 2013, 42, 1-6.
doi: 10.1016/j.jmgm.2013.02.007
Zhu, C.; Byrd, R. H.; Lu, P.; Nocedal, J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 1997, 23, 550-560.
doi: 10.1145/279232.279236
Morales, J. L.; Nocedal, J. Remark on "algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization". ACM Trans. Math. Softw. 2011, 38, 1-4.
Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 1953, 21, 1087-1092.
doi: 10.1063/1.1699114
Seeber, M.; Felline, A.; Raimondi, F.; Muff, S.; Friedman, R.; Rao, F.; Caflisch, A.; Fanelli, F. Wordom: A user-friendly program for the analysis of molecular structures, trajectories, and free energy surfaces. J. Comput. Chem. 2011, 32, 1183-1194.
doi: 10.1002/jcc.21688
Heyer, L. J.; Kruglyak, S.; Yooseph, S. Exploring expression data: Identification and analysis of coexpressed genes. Genome Res. 1999, 9, 1106-1115.
doi: 10.1101/gr.9.11.1106
Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781-802.
doi: 10.1002/(ISSN)1096-987X
Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926-935.
doi: 10.1063/1.445869
Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell, A. D., Jr. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010, 31, 671-90.
Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14, 33-38.
doi: 10.1016/0263-7855(96)00018-5
Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R. Constant pressure molecular dynamics simulation: The Langevin piston method. J. Chem. Phys. 1995, 103, 4613-4621.
doi: 10.1063/1.470648
Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327-341.
doi: 10.1016/0021-9991(77)90098-5
Candotti, M.; Esteban-Martín, S.; Salvatella, X.; Orozco, M. Toward an atomistic description of the urea-denatured state of proteins. Proc. Natl. Acad. Sci. USA 2013, 110, 5933-5938.
doi: 10.1073/pnas.1216589110
Kohn, J. E.; Millett, I. S.; Jacob, J.; Zagrovic, B.; Dillon, T. M.; Cingel, N.; Dothager, R. S.; Seifert, S.; Thiyagarajan, P.; Sosnick, T. R.; Hasan, M. Z.; Pande, V. S.; Ruczinski, I.; Doniach, S.; Plaxco, K. W. Random-coil behavior and the dimensions of chemically unfolded proteins. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 12491-12496.
doi: 10.1073/pnas.0403643101
Adzhubei, A. A.; Sternberg, M. J. E.; Makarov, A. A. Polyproline-II Helix in Proteins: Structure and Function. J. Mol. Biol. 2013, 425, 2100-2132.
doi: 10.1016/j.jmb.2013.03.018
Chung, H. S.; Ganim, Z.; Jones, K. C.; Tokmakoff, A. Transient 2D IR spectroscopy of ubiquitin unfolding dynamics. Proc. Natl. Acad. Sci. USA 2007, 104, 14237-14242.
doi: 10.1073/pnas.0700959104
Chung, H. S.; Shandiz, A.; Sosnick, T. R.; Tokmakoff, A. Probing the folding transition state of ubiquitin mutants by temperature-jump-induced downhill unfolding. Biochemistry 2008, 47, 13870-13877.
doi: 10.1021/bi801603e
Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Shaw, D. E. How fast-folding proteins fold. Science 2011, 334, 517-520.
doi: 10.1126/science.1208351
Baxa, M. C.; Freed, K. F.; Sosnick, T. R. Quantifying the structural requirements of the folding transition state of Protein A and other systems. J. Mol. Biol. 2008, 381, 1362-1381.
doi: 10.1016/j.jmb.2008.06.067
Sosnick, T. R.; Barrick, D. The folding of single domain proteins - have we reached a consensus? Curr. Opin. Struct. Biol. 2011, 21, 12-24.
doi: 10.1016/j.sbi.2010.11.002
Daggett, V. Protein Folding-Simulation. Chem. Rev. 2006, 106, 1898-1916.
doi: 10.1021/cr0404242
Qvist, J.; Ortega, G.; Tadeo, X.; Millet, O.; Halle, B. Hydration dynamics of a halophilic protein in folded and unfolded states. J. Phys. Chem. B 2012, 116, 3436-44.
Wen Su , Siying Liu , Qingfu Zhang , Zhongyan Zhou , Na Wang , Lei Yue . Temperature-controlled electrospray ionization tandem mass spectrometry study on protein/small molecule interaction. Chinese Chemical Letters, 2025, 36(5): 110237-. doi: 10.1016/j.cclet.2024.110237
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Wenjie Jiang , Zhixiang Zhai , Xiaoyan Zhuo , Jia Wu , Boyao Feng , Tianqi Yu , Huan Wen , Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519
Yan Zou , Yin-Shuang Hu , Deng-Hui Tian , Hong Wu , Xiaoshu Lv , Guangming Jiang , Yu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Jiakun Bai , Junhui Jia , Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323
Liang-Yu Chang , Li-Ju Xu , Dong Qiu . Shellac-based capsule for long-term controlled releasing urea with a broad soil pH tolerance. Chinese Chemical Letters, 2025, 36(5): 110034-. doi: 10.1016/j.cclet.2024.110034
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
Yuan Liu , Boyang Wang , Yaxin Li , Weidong Li , Siyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426
Jian Peng , Yue Jiang , Shuangyu Wu , Yanran Cheng , Jingyu Liang , Yixin Wang , Zhuo Li , Sijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Fengrui Yang , Debing Wang , Xinying Zhang , Jie Zhang , Zhichao Wu , Qiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599
Wenkai Liu , Yanxian Hou , Weijian Liu , Ran Wang , Shan He , Xiang Xia , Chengyuan Lv , Hua Gu , Qichao Yao , Qingze Pan , Zehou Su , Danhong Zhou , Wen Sun , Jiangli Fan , Xiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631
Zhao-Bo Hu , Ling-Ao Gui , Long-He Li , Tong-Tong Xiao , Adam T. Hand , Pagnareach Tin , Mykhaylo Ozerov , Yan Peng , Zhongwen Ouyang , Zhenxing Wang , Zi-Ling Xue , You Song . CoⅡ single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600