Citation: Bo Yang, Shuang-Hong Zhang, Yi-Feng Zou, Wen-Shi Ma, Guo-Jia Huang, Mao-Dong Li. Improving the Thermal Conductivity and Mechanical Properties of Two-component Room Temperature Vulcanized Silicone Rubber by Filling with Hydrophobically Modified SiO2-Graphene Nanohybrids[J]. Chinese Journal of Polymer Science, ;2019, 37(2): 189-196. doi: 10.1007/s10118-019-2185-4 shu

Improving the Thermal Conductivity and Mechanical Properties of Two-component Room Temperature Vulcanized Silicone Rubber by Filling with Hydrophobically Modified SiO2-Graphene Nanohybrids

  • Corresponding author: Guo-Jia Huang, huangguojia@163.com
  • Received Date: 21 June 2018
    Revised Date: 27 August 2018
    Accepted Date: 30 August 2018
    Available Online: 25 September 2018

  • The SiO2 nanoparticles were coated on the surface of graphene oxide (GO) by sol-gel method to get the SiO2-G compound. The SiO2-G was restored and oleophylically modified to prepare hydrophobic modified SiO2-G (HM-SiO2-G) which was subsequently added to silicone rubber matrix to prepare two-component room temperature vulcanized (RTV-2) thermal conductive silicone rubber. The morphology, chemical structure and dispersity of the modified graphene were characterized with SEM, FTIR, Raman, and XPS methods. In addition, the heat-resistance behavior, mechanical properties, thermal conductivity, and electrical conductivity of the RTV-2 silicone rubber were also studied systematically. The results showed that the SiO2 nanoparticles were coated on graphene oxide successfully, and HM-SiO2-G was uniformly dispersed in RTV-2 silicone rubber. The addition of HM-SiO2-G could effectively improve the thermal stability, mechanical properties and thermal conductivity of RTV-2 silicone rubber and had no great influence on the electrical insulation performance.

    1. [1]

      Zheng, Z. M.; Xu C. H.; Jiang J.; Ren, C. Y.; Gao, W.; Xie, Z. M. Hydrophobicity of contaminated silicone rubber surfaces. Chinese J. Polym. Sci. 2002, 20, 559-564.

    2. [2]

      Gan, T. F.; Shentu, B. Q.; Weng, Z. X. Modification of CeO2 and its effect on the heat-resistance of silicone rubber. Chinese J. Polym. Sci. 2008, 113, 3202-3206.  doi: 10.1142/S0256767908003163

    3. [3]

      Wang, J. B.; Li Q. Y.; Wu C. F.; Xu, H. Y. Thermal Conductivity and Mechanical Properties of Carbon Black Filled Silicone Rubber. Polym. Polym. Compos. 2014, 22, 393-400.  doi: 10.1177/096739111402200405

    4. [4]

      Jiang, M. J.; Dang, Z. M.; Xu, H. P. Enhanced electrical conductivity in chemically modified carbon nanotube/methylvinyl silicone rubber nanocomposite. Europ. Polym. J. 2007, 43, 4924-4930.  doi: 10.1016/j.eurpolymj.2007.09.022

    5. [5]

      Pradhan, B.; Srivastava, S. K. Synergistic effect of three-dimensional multi-walled carbon nanotube-graphene nanofiller in enhancing the mechanical and thermal properties of high-performance silicone rubber. Polym. Inter. 2014, 63, 1219-1228.  doi: 10.1002/pi.2014.63.issue-7

    6. [6]

      Gan, L.; Shang, S. M.; Yuen, C. W. M.; Jiang, S. X.; Luo, N. M. Facile preparation of graphene nanoribbon filled silicone rubber nanocomposite with improved thermal and mechanical properties. Compos. Part B Eng. 2015, 69, 237-242  doi: 10.1016/j.compositesb.2014.10.019

    7. [7]

      Chabot, V.; Higgins, D.; Yu, A. P.; Xiao, X. C.; Chen, Z. W.; Zhang, J. J. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment. Energ. Environ. Sci. 2014, 7, 1564-1596.  doi: 10.1039/c3ee43385d

    8. [8]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Dubonos, S. V.; Grigorieva, V. I.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666-669.  doi: 10.1126/science.1102896

    9. [9]

      Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.  doi: 10.1038/nmat1849

    10. [10]

      Huang, G. J.; Chen, Z. G.; Li, M. D.; Yang, B.; Xin, M. L.; Li, S. P.; Yin, Z. J. Surface functional modification of graphene and graphene oxide. Acta Chim. Sinica 2016, 74, 789-799.  doi: 10.6023/A16070360

    11. [11]

      Yang, Y. K.; He, C. E.; Peng, R. G.; Baji, A.; Du, X. S.; Huang, Y. L.; Xie, X. L.; Mai, Y. W. Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites. J. Mater. Chem. 2012, 22, 5666-5675.  doi: 10.1039/c2jm16006d

    12. [12]

      Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWiliams, J. L.; Hamon, M. A.; Haddon, R. C. Solution properties of graphite and graphene. J. Am. Chem. Soc. 2006, 128, 7720-7721.  doi: 10.1021/ja060680r

    13. [13]

      Hu, H. T.; Wang, X. B.; Wang, J. C.; Liu, F. M.; Zhang, M.; Xu, C. H. Microwave-assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics. Appl. Surf. Sci. 2011, 257, 2637-2642.  doi: 10.1016/j.apsusc.2010.10.035

    14. [14]

      Vadukumpully, S.; Gupta, J.; Zhang, Y. P.; Xu, G. Q.; Valiyaveettil, S. Functionalization of surfactant wrapped graphene nanosheets with alkylazides for enhanced dispersibility. Nanoscale 2011, 3, 303-308  doi: 10.1039/C0NR00547A

    15. [15]

      Zhu, D. Y.; Xiao, Z. Y.; Liu, X. M. Introducing polyethyleneimine (PEI) into the electrospun fibrous membranes containing diiron mimics of [FeFe]-hydrogenase: Membrane electrodes and their electrocatalysis on proton reduction in aqueous media. Int. J. Hydro. Energ. 2015, 40, 5081-5091.  doi: 10.1016/j.ijhydene.2015.02.050

    16. [16]

      Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856-5864.  doi: 10.1021/ja800745y

    17. [17]

      Vallés, C.; Drummond, C.; Saadaoui, H.; Furtado, C. A.; He, M. S.; Roubeau, O.; Ortolani, L.; Monthioux, M.; Pénicaud, A. Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 2008, 130, 15802-15804.  doi: 10.1021/ja808001a

    18. [18]

      Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80(6),1339-1344  doi: 10.1021/ja01539a017

    19. [19]

      Ramezanzadeh, B.; Haeri, Z.; Ramezanzadeh, M. A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance. Chem. Eng. J. 2016, 303, 511-528.  doi: 10.1016/j.cej.2016.06.028

    20. [20]

      Kou, L.; Gao, C. Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings. Nanoscale 2011, 3, 519-528.  doi: 10.1039/C0NR00609B

    21. [21]

      Haeri, S. Z.; Ramezanzadeh, B.; Asghari, M. A novel fabrication of a high performance SiO2-graphene oxide (GO) nanohybrids: Characterization of thermal properties of epoxy nanocomposites filled with SiO2-GO nanohybrids. J. Colloid Inter. Sci. 2017, 493, 111-122.  doi: 10.1016/j.jcis.2017.01.016

    1. [1]

      Zheng, Z. M.; Xu C. H.; Jiang J.; Ren, C. Y.; Gao, W.; Xie, Z. M. Hydrophobicity of contaminated silicone rubber surfaces. Chinese J. Polym. Sci. 2002, 20, 559-564.

    2. [2]

      Gan, T. F.; Shentu, B. Q.; Weng, Z. X. Modification of CeO2 and its effect on the heat-resistance of silicone rubber. Chinese J. Polym. Sci. 2008, 113, 3202-3206.  doi: 10.1142/S0256767908003163

    3. [3]

      Wang, J. B.; Li Q. Y.; Wu C. F.; Xu, H. Y. Thermal Conductivity and Mechanical Properties of Carbon Black Filled Silicone Rubber. Polym. Polym. Compos. 2014, 22, 393-400.  doi: 10.1177/096739111402200405

    4. [4]

      Jiang, M. J.; Dang, Z. M.; Xu, H. P. Enhanced electrical conductivity in chemically modified carbon nanotube/methylvinyl silicone rubber nanocomposite. Europ. Polym. J. 2007, 43, 4924-4930.  doi: 10.1016/j.eurpolymj.2007.09.022

    5. [5]

      Pradhan, B.; Srivastava, S. K. Synergistic effect of three-dimensional multi-walled carbon nanotube-graphene nanofiller in enhancing the mechanical and thermal properties of high-performance silicone rubber. Polym. Inter. 2014, 63, 1219-1228.  doi: 10.1002/pi.2014.63.issue-7

    6. [6]

      Gan, L.; Shang, S. M.; Yuen, C. W. M.; Jiang, S. X.; Luo, N. M. Facile preparation of graphene nanoribbon filled silicone rubber nanocomposite with improved thermal and mechanical properties. Compos. Part B Eng. 2015, 69, 237-242  doi: 10.1016/j.compositesb.2014.10.019

    7. [7]

      Chabot, V.; Higgins, D.; Yu, A. P.; Xiao, X. C.; Chen, Z. W.; Zhang, J. J. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment. Energ. Environ. Sci. 2014, 7, 1564-1596.  doi: 10.1039/c3ee43385d

    8. [8]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Dubonos, S. V.; Grigorieva, V. I.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666-669.  doi: 10.1126/science.1102896

    9. [9]

      Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.  doi: 10.1038/nmat1849

    10. [10]

      Huang, G. J.; Chen, Z. G.; Li, M. D.; Yang, B.; Xin, M. L.; Li, S. P.; Yin, Z. J. Surface functional modification of graphene and graphene oxide. Acta Chim. Sinica 2016, 74, 789-799.  doi: 10.6023/A16070360

    11. [11]

      Yang, Y. K.; He, C. E.; Peng, R. G.; Baji, A.; Du, X. S.; Huang, Y. L.; Xie, X. L.; Mai, Y. W. Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites. J. Mater. Chem. 2012, 22, 5666-5675.  doi: 10.1039/c2jm16006d

    12. [12]

      Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWiliams, J. L.; Hamon, M. A.; Haddon, R. C. Solution properties of graphite and graphene. J. Am. Chem. Soc. 2006, 128, 7720-7721.  doi: 10.1021/ja060680r

    13. [13]

      Hu, H. T.; Wang, X. B.; Wang, J. C.; Liu, F. M.; Zhang, M.; Xu, C. H. Microwave-assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics. Appl. Surf. Sci. 2011, 257, 2637-2642.  doi: 10.1016/j.apsusc.2010.10.035

    14. [14]

      Vadukumpully, S.; Gupta, J.; Zhang, Y. P.; Xu, G. Q.; Valiyaveettil, S. Functionalization of surfactant wrapped graphene nanosheets with alkylazides for enhanced dispersibility. Nanoscale 2011, 3, 303-308  doi: 10.1039/C0NR00547A

    15. [15]

      Zhu, D. Y.; Xiao, Z. Y.; Liu, X. M. Introducing polyethyleneimine (PEI) into the electrospun fibrous membranes containing diiron mimics of [FeFe]-hydrogenase: Membrane electrodes and their electrocatalysis on proton reduction in aqueous media. Int. J. Hydro. Energ. 2015, 40, 5081-5091.  doi: 10.1016/j.ijhydene.2015.02.050

    16. [16]

      Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856-5864.  doi: 10.1021/ja800745y

    17. [17]

      Vallés, C.; Drummond, C.; Saadaoui, H.; Furtado, C. A.; He, M. S.; Roubeau, O.; Ortolani, L.; Monthioux, M.; Pénicaud, A. Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 2008, 130, 15802-15804.  doi: 10.1021/ja808001a

    18. [18]

      Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80(6),1339-1344  doi: 10.1021/ja01539a017

    19. [19]

      Ramezanzadeh, B.; Haeri, Z.; Ramezanzadeh, M. A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance. Chem. Eng. J. 2016, 303, 511-528.  doi: 10.1016/j.cej.2016.06.028

    20. [20]

      Kou, L.; Gao, C. Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings. Nanoscale 2011, 3, 519-528.  doi: 10.1039/C0NR00609B

    21. [21]

      Haeri, S. Z.; Ramezanzadeh, B.; Asghari, M. A novel fabrication of a high performance SiO2-graphene oxide (GO) nanohybrids: Characterization of thermal properties of epoxy nanocomposites filled with SiO2-GO nanohybrids. J. Colloid Inter. Sci. 2017, 493, 111-122.  doi: 10.1016/j.jcis.2017.01.016

  • 加载中
    1. [1]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    2. [2]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    3. [3]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    4. [4]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    5. [5]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    6. [6]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    7. [7]

      Huining ZhangBaixiang WangJianping HanShaofeng WangXingmao LiuWenhui NiuZhongyu ShiZhiqiang WeiZhiguo WuYing ZhuQi Guo . Nature’s revelation: Preparation of Graphene-based Biomimetic materials and its application prospects for water purification. Chinese Chemical Letters, 2025, 36(6): 110319-. doi: 10.1016/j.cclet.2024.110319

    8. [8]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    9. [9]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    10. [10]

      Qiao WangZiling JiangChuang YuLiping LiGuangshe Li . Research progress of inorganic sodium ion conductors for solid-state batteries. Chinese Chemical Letters, 2025, 36(6): 110006-. doi: 10.1016/j.cclet.2024.110006

    11. [11]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    12. [12]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    15. [15]

      Wenfeng ZangYixin SunJingyi ZhangYanzhong HaoQianhui JinHongying XiaoZuo ZhangXianbao ShiJin SunZhonggui HeCong LuoBingjun Sun . Two-tailed modification module tuned steric-hindrance effect enabling high therapeutic efficacy of paclitaxel prodrug nanoassemblies. Chinese Chemical Letters, 2025, 36(5): 110230-. doi: 10.1016/j.cclet.2024.110230

    16. [16]

      Ziyi Liu Feifei Guo Tingting Cao Youxuan Sun Xutang Tao Zeliang Gao . High thermal conductivity in Ga2TeO6 crystals: Synergistic effects of rigid polyhedral frameworks and stereochemically inert cations. Chinese Journal of Structural Chemistry, 2025, 44(4): 100544-100544. doi: 10.1016/j.cjsc.2025.100544

    17. [17]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    18. [18]

      Hong Chen Mao-Yin Ran Long-Hua Li Xin-Tao Wu Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397

    19. [19]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    20. [20]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

Metrics
  • PDF Downloads(0)
  • Abstract views(1011)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return