Citation: Zi-Bo Wei, Yang Zhao, Chao Wang, Shigenori Kuga, Yong Huang, Min Wu. Antistatic PVC-graphene Composite through Plasticizer-mediated Exfoliation of Graphite[J]. Chinese Journal of Polymer Science, ;2018, 36(12): 1361-1367. doi: 10.1007/s10118-018-2160-5 shu

Antistatic PVC-graphene Composite through Plasticizer-mediated Exfoliation of Graphite

  • Multilayer graphene was prepared by mechanical exfoliation of natural graphite with dioctyl phthalate (DOP) as milling medium without solvent. The obtained mixture could be directly mixed with poly(vinyl chloride) (PVC) for melt-forming, with DOP acting as plasticizer and graphene acting as conductive filler for antistatic performance. The composite showed surface resistance of 2.5 × 106 Ω/□ at 1 wt% carbon additive, significantly lower than approx. 7 wt% of raw graphite required for achieving the same level. This value is low enough for practical antistatic criterion of 3 × 108 Ω/□. The effect of filler addition on mechanical performance was minimal, or even beneficial for the milled carbon in contrast to the case of raw graphite.

    1. [1]

      Wang, H.; Xie, G.; Fang, M.; Ying, Z.; Tong, Y.; Zeng, Y. Electrical and mechanical properties of antistatic PVC films containing multi-layer graphene. Compos. Part B 2015, 79, 444−450  doi: 10.1016/j.compositesb.2015.05.011

    2. [2]

      Moulay, S. Chemical modification of poly(vinyl chloride)-Still on the run. Prog. Polym. Sci. 2010, 35(3), 303−331  doi: 10.1016/j.progpolymsci.2009.12.001

    3. [3]

      Murthy, K.; Ramkumar, K.; Satyam, M. Electrical properties of PVC-graphite thick films. J. Mater. Sci. Lett. 1984, 3(9), 813−816  doi: 10.1007/BF00727982

    4. [4]

      Noguchi, T.; Nagai, T.; Seto, J. E. Melt viscosity and electrical conductivity of carbon black PVC composite. J. Appl. Polym. Sci. 1986, 31(6), 1913−1924  doi: 10.1002/app.1986.070310632

    5. [5]

      Wang, G. Q.; Zeng, P. Electrical conductivity of poly(vinyl chloride) plastisol short carbon filter composite. Polym. Eng. Sci. 1997, 37(1), 96−100  doi: 10.1002/(ISSN)1548-2634

    6. [6]

      Wu, X.; Qiu, J.; Liu, P., Sakai, E. Preparation and characterization of polyamide composites with modified graphite powders. J. Polym. Res. 2013, 20(11), 284  doi: 10.1007/s10965-013-0284-4

    7. [7]

      Yazdani, H.; Smith, B. E.; Hatami, K. Multi-walled carbon nanotube-filled polyvinyl chloride composites: Influence of processing method on dispersion quality, electrical conductivity and mechanical properties. Compos. Part A 2016, 82, 65−77  doi: 10.1016/j.compositesa.2015.12.005

    8. [8]

      Zhang, M.; Zhang, C.; Du, Z.; Li, H.; Zou, W. Preparation of antistatic polystyrene superfine powder with polystyrene modified carbon nanotubes as antistatic agent. Compos. Sci. Technol. 2017, 138, 1−7  doi: 10.1016/j.compscitech.2016.11.010

    9. [9]

      Lei, L.; Qiu, J.; Sakai, E. Preparing conductive poly(lactic acid) (PLA) with poly(methyl methacrylate) (PMMA) functionalized graphene (PFG) by admicellar polymerization. Chem. Eng. J. 2012, 209, 20−27  doi: 10.1016/j.cej.2012.07.114

    10. [10]

      Wang, H.; Xie, G. Y.; Ying, Z.; Tong, Y.; Zeng, Y. Enhanced mechanical properties of multi-layer graphene filled poly(vinyl chloride) composite films. J. Mater. Sci. Technol. 2015, 31(4), 340−344  doi: 10.1016/j.jmst.2014.09.009

    11. [11]

      Wang, H.; Zhang, H.; Zhao, W.; Zhang, W.; Chen, G. Preparation of polymer/oriented graphite nanosheet composite by electric field-inducement. Compos. Sci. Technol. 2008, 68(1), 238−243  doi: 10.1016/j.compscitech.2007.04.012

    12. [12]

      Li, J.; Kim, J. K. Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos. Sci. Technol. 2007, 67(10), 2114−2120  doi: 10.1016/j.compscitech.2006.11.010

    13. [13]

      Milev, A.; Wilson, M.; Kannangara, G. S. K.; Tran, N. X-ray diffraction line profile analysis of nanocrystalline graphite. Materials Chem. & Phys. 2008, 111(2-3), 346−350

    14. [14]

      Montone, A.; Grbovic, J.; Bassetti, A.; Mirenghi, L.; Rotolo, P.; Bonetti, E. Microstructure, surface properties and hydrating behaviour of Mg-C composites prepared by ball milling with benzene. Int. J. Hydrogen Energ. 2006, 31(14), 2088−2096  doi: 10.1016/j.ijhydene.2006.01.020

    15. [15]

      Yao, Y. G.; Lin, Z. Y.; Li, Z.; Song, X. J.; Moon, K. S.; Wong, C. P. Large-scale production of two-dimensional nanosheets. J. Mater. Chem. 2012, 22(27), 13494−13499  doi: 10.1039/c2jm30587a

    16. [16]

      Welham, N. J.; Berbenni, V.; Chapman, P. G. Effect of extended ball milling on graphite. J. Alloy. Compd. 2003, 349(1-2), 255−263  doi: 10.1016/S0925-8388(02)00880-0

    17. [17]

      Antisari, M. V.; Montone, A.; Jovic, N.; Piscopiello, E.; Alvani, C.; Pilloni, L. Low energy pure shear milling: A method for the preparation of graphite nano-sheets. Scripta. Mater. 2006, 55(11), 1047−1050  doi: 10.1016/j.scriptamat.2006.08.002

    18. [18]

      Zhang, K.; Zhang, X.; Li, H.; Xing, X.; Jin, L.; Cao, Q. Direct exfoliation of graphite into graphene in aqueous solution using a novel surfactant obtained from used engine oil. J. Mater. Sci. 2017, 53(4), 2484−2496

    19. [19]

      Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446(7131), 60−63  doi: 10.1038/nature05545

    20. [20]

      Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Obergfell, D.; Roth, S. On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 2007, 143(1-2), 101−109  doi: 10.1016/j.ssc.2007.02.047

    21. [21]

      Horiuchi, S.; Gotou, T.; Fujiwara, M.; Sotoaka, R.; Hirata, M.; Kimoto, K. Carbon nanofilm with a new structure and property. Japanese J. Appl. Phys. 2003, 42(Part 2, No.9A/B), L1073−L1076  doi: 10.1143/JJAP.42.L1073

    22. [22]

      Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotech. 2008, 3(9), 563−568  doi: 10.1038/nnano.2008.215

    23. [23]

      Hansora, D. P.; Shimpi, N. G.; Mishra, S. Graphite to graphene via graphene oxide: an overview on synthesis, properties, and applications. JOM 2015, 67(12), 2855−2868  doi: 10.1007/s11837-015-1522-5

    24. [24]

      Vadukumpully, S.; Paul, J.; Valiyaveettil, S. Cationic surfactant mediated exfoliation of graphite into graphene flakes. Carbon 2009, 47(14), 3288−3294  doi: 10.1016/j.carbon.2009.07.049

    25. [25]

      Vidano, R. P.; Fischbach, D. B.; Willis, L. J.; Loehr, T. M. Observation of raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun. 1981, 39(2), 341−344  doi: 10.1016/0038-1098(81)90686-4

    26. [26]

      Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C. Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett. 2007, 7(2), 238−242  doi: 10.1021/nl061702a

    27. [27]

      Castiglioni, C.; Negri, F.; Rigolio, M.; Zerbi, G. Raman activation in disordered graphites of the A1' symmetry forbidden k≠0 phonon: The origin of the D line. J. Chem. Phys. 2001, 115(8), 3769−3778  doi: 10.1063/1.1381529

    28. [28]

      Nemanich, R. J.; Solin, S. A. 1st-order and 2nd-order Raman-scattering from finite-size crystals of graphite. Phys. Rev. B 1979, 20(2), 392−401  doi: 10.1103/PhysRevB.20.392

    29. [29]

      Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143(1-2), 47−57  doi: 10.1016/j.ssc.2007.03.052

    30. [30]

      Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97(18), 187401  doi: 10.1103/PhysRevLett.97.187401

    31. [31]

      Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund, P. C. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 2006, 6(12), 2667−2673  doi: 10.1021/nl061420a

    32. [32]

      Menges, G. Werkstoffkunde Kunststoffe, Carl Hanser Ver-lag München Wien, 3, Auflage, 1990, p 217-218.

    1. [1]

      Wang, H.; Xie, G.; Fang, M.; Ying, Z.; Tong, Y.; Zeng, Y. Electrical and mechanical properties of antistatic PVC films containing multi-layer graphene. Compos. Part B 2015, 79, 444−450  doi: 10.1016/j.compositesb.2015.05.011

    2. [2]

      Moulay, S. Chemical modification of poly(vinyl chloride)-Still on the run. Prog. Polym. Sci. 2010, 35(3), 303−331  doi: 10.1016/j.progpolymsci.2009.12.001

    3. [3]

      Murthy, K.; Ramkumar, K.; Satyam, M. Electrical properties of PVC-graphite thick films. J. Mater. Sci. Lett. 1984, 3(9), 813−816  doi: 10.1007/BF00727982

    4. [4]

      Noguchi, T.; Nagai, T.; Seto, J. E. Melt viscosity and electrical conductivity of carbon black PVC composite. J. Appl. Polym. Sci. 1986, 31(6), 1913−1924  doi: 10.1002/app.1986.070310632

    5. [5]

      Wang, G. Q.; Zeng, P. Electrical conductivity of poly(vinyl chloride) plastisol short carbon filter composite. Polym. Eng. Sci. 1997, 37(1), 96−100  doi: 10.1002/(ISSN)1548-2634

    6. [6]

      Wu, X.; Qiu, J.; Liu, P., Sakai, E. Preparation and characterization of polyamide composites with modified graphite powders. J. Polym. Res. 2013, 20(11), 284  doi: 10.1007/s10965-013-0284-4

    7. [7]

      Yazdani, H.; Smith, B. E.; Hatami, K. Multi-walled carbon nanotube-filled polyvinyl chloride composites: Influence of processing method on dispersion quality, electrical conductivity and mechanical properties. Compos. Part A 2016, 82, 65−77  doi: 10.1016/j.compositesa.2015.12.005

    8. [8]

      Zhang, M.; Zhang, C.; Du, Z.; Li, H.; Zou, W. Preparation of antistatic polystyrene superfine powder with polystyrene modified carbon nanotubes as antistatic agent. Compos. Sci. Technol. 2017, 138, 1−7  doi: 10.1016/j.compscitech.2016.11.010

    9. [9]

      Lei, L.; Qiu, J.; Sakai, E. Preparing conductive poly(lactic acid) (PLA) with poly(methyl methacrylate) (PMMA) functionalized graphene (PFG) by admicellar polymerization. Chem. Eng. J. 2012, 209, 20−27  doi: 10.1016/j.cej.2012.07.114

    10. [10]

      Wang, H.; Xie, G. Y.; Ying, Z.; Tong, Y.; Zeng, Y. Enhanced mechanical properties of multi-layer graphene filled poly(vinyl chloride) composite films. J. Mater. Sci. Technol. 2015, 31(4), 340−344  doi: 10.1016/j.jmst.2014.09.009

    11. [11]

      Wang, H.; Zhang, H.; Zhao, W.; Zhang, W.; Chen, G. Preparation of polymer/oriented graphite nanosheet composite by electric field-inducement. Compos. Sci. Technol. 2008, 68(1), 238−243  doi: 10.1016/j.compscitech.2007.04.012

    12. [12]

      Li, J.; Kim, J. K. Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos. Sci. Technol. 2007, 67(10), 2114−2120  doi: 10.1016/j.compscitech.2006.11.010

    13. [13]

      Milev, A.; Wilson, M.; Kannangara, G. S. K.; Tran, N. X-ray diffraction line profile analysis of nanocrystalline graphite. Materials Chem. & Phys. 2008, 111(2-3), 346−350

    14. [14]

      Montone, A.; Grbovic, J.; Bassetti, A.; Mirenghi, L.; Rotolo, P.; Bonetti, E. Microstructure, surface properties and hydrating behaviour of Mg-C composites prepared by ball milling with benzene. Int. J. Hydrogen Energ. 2006, 31(14), 2088−2096  doi: 10.1016/j.ijhydene.2006.01.020

    15. [15]

      Yao, Y. G.; Lin, Z. Y.; Li, Z.; Song, X. J.; Moon, K. S.; Wong, C. P. Large-scale production of two-dimensional nanosheets. J. Mater. Chem. 2012, 22(27), 13494−13499  doi: 10.1039/c2jm30587a

    16. [16]

      Welham, N. J.; Berbenni, V.; Chapman, P. G. Effect of extended ball milling on graphite. J. Alloy. Compd. 2003, 349(1-2), 255−263  doi: 10.1016/S0925-8388(02)00880-0

    17. [17]

      Antisari, M. V.; Montone, A.; Jovic, N.; Piscopiello, E.; Alvani, C.; Pilloni, L. Low energy pure shear milling: A method for the preparation of graphite nano-sheets. Scripta. Mater. 2006, 55(11), 1047−1050  doi: 10.1016/j.scriptamat.2006.08.002

    18. [18]

      Zhang, K.; Zhang, X.; Li, H.; Xing, X.; Jin, L.; Cao, Q. Direct exfoliation of graphite into graphene in aqueous solution using a novel surfactant obtained from used engine oil. J. Mater. Sci. 2017, 53(4), 2484−2496

    19. [19]

      Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446(7131), 60−63  doi: 10.1038/nature05545

    20. [20]

      Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Obergfell, D.; Roth, S. On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 2007, 143(1-2), 101−109  doi: 10.1016/j.ssc.2007.02.047

    21. [21]

      Horiuchi, S.; Gotou, T.; Fujiwara, M.; Sotoaka, R.; Hirata, M.; Kimoto, K. Carbon nanofilm with a new structure and property. Japanese J. Appl. Phys. 2003, 42(Part 2, No.9A/B), L1073−L1076  doi: 10.1143/JJAP.42.L1073

    22. [22]

      Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotech. 2008, 3(9), 563−568  doi: 10.1038/nnano.2008.215

    23. [23]

      Hansora, D. P.; Shimpi, N. G.; Mishra, S. Graphite to graphene via graphene oxide: an overview on synthesis, properties, and applications. JOM 2015, 67(12), 2855−2868  doi: 10.1007/s11837-015-1522-5

    24. [24]

      Vadukumpully, S.; Paul, J.; Valiyaveettil, S. Cationic surfactant mediated exfoliation of graphite into graphene flakes. Carbon 2009, 47(14), 3288−3294  doi: 10.1016/j.carbon.2009.07.049

    25. [25]

      Vidano, R. P.; Fischbach, D. B.; Willis, L. J.; Loehr, T. M. Observation of raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun. 1981, 39(2), 341−344  doi: 10.1016/0038-1098(81)90686-4

    26. [26]

      Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C. Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett. 2007, 7(2), 238−242  doi: 10.1021/nl061702a

    27. [27]

      Castiglioni, C.; Negri, F.; Rigolio, M.; Zerbi, G. Raman activation in disordered graphites of the A1' symmetry forbidden k≠0 phonon: The origin of the D line. J. Chem. Phys. 2001, 115(8), 3769−3778  doi: 10.1063/1.1381529

    28. [28]

      Nemanich, R. J.; Solin, S. A. 1st-order and 2nd-order Raman-scattering from finite-size crystals of graphite. Phys. Rev. B 1979, 20(2), 392−401  doi: 10.1103/PhysRevB.20.392

    29. [29]

      Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143(1-2), 47−57  doi: 10.1016/j.ssc.2007.03.052

    30. [30]

      Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97(18), 187401  doi: 10.1103/PhysRevLett.97.187401

    31. [31]

      Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund, P. C. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 2006, 6(12), 2667−2673  doi: 10.1021/nl061420a

    32. [32]

      Menges, G. Werkstoffkunde Kunststoffe, Carl Hanser Ver-lag München Wien, 3, Auflage, 1990, p 217-218.

  • 加载中
    1. [1]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    2. [2]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    3. [3]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    4. [4]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    5. [5]

      Huining ZhangBaixiang WangJianping HanShaofeng WangXingmao LiuWenhui NiuZhongyu ShiZhiqiang WeiZhiguo WuYing ZhuQi Guo . Nature’s revelation: Preparation of Graphene-based Biomimetic materials and its application prospects for water purification. Chinese Chemical Letters, 2025, 36(6): 110319-. doi: 10.1016/j.cclet.2024.110319

    6. [6]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    7. [7]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    8. [8]

      Yunchao Li Hong Yuan Yuan Chun Xiaokui Wang Fuping Tian Yunshan Bai Yongmei Liu Wanchun Zhu Shu'e Song Zhongyun Wu Li Wang Yufeng Li Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Electrical Properties. University Chemistry, 2025, 40(5): 165-177. doi: 10.12461/PKU.DXHX202503055

    9. [9]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    10. [10]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    11. [11]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    12. [12]

      Bowen SongChenxu ShiYinghao QuHongjun LiuHui YangXiaoming WuXijun Liu . The electrical properties and charge transport mechanism of MXenes. Chinese Chemical Letters, 2025, 36(6): 110823-. doi: 10.1016/j.cclet.2025.110823

    13. [13]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    14. [14]

      Tong ZhaoKe WangFeiyu LiuShiyu ZhangShih-Hsin Ho . Recent progress of tailoring valuable graphene quantum dots from biomass. Chinese Chemical Letters, 2025, 36(6): 110321-. doi: 10.1016/j.cclet.2024.110321

    15. [15]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    16. [16]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    17. [17]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    18. [18]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    19. [19]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    20. [20]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

Metrics
  • PDF Downloads(0)
  • Abstract views(1158)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return