Citation: Ying-Lin Zhang, Chuan-Long Li, Tahir Rasheed, Ping Huang, Yong-Feng Zhou. Synthesis, Self-assembly and Electrode Application of Mussel-inspired Alternating Copolymers[J]. Chinese Journal of Polymer Science, ;2018, 36(8): 897-904. doi: 10.1007/s10118-018-2151-6 shu

Synthesis, Self-assembly and Electrode Application of Mussel-inspired Alternating Copolymers

  • Corresponding author: Yong-Feng Zhou, yfzhou@sjtu.edu.cn
  • Received Date: 1 April 2018
    Revised Date: 30 April 2018
    Available Online: 28 May 2018

  • We reported the first mussel-inspired alternating copolymer with a high amount of catechol groups (50% molar ratio) through a facile epoxy-amino click reaction between 9,9-bis(4-(2-glycidyloxyethyl)phenyl fluorene (BGEPF) and dopamine (DA). The obtained copolymers were used to prepare carbon/nitrogen-doped α-Fe2O3 nanoparticles through self-assembly, coordination and calcination, which displayed excellent electrochemical performance as anode materials for Li-ion batteries.
  • Porphyrin arrays are organic functional molecules with large π-conjugated systems and have potential applications in optoelectronic devices [1-11], sensors [12-15] and photodynamic therapy (PDT) [16-18]. In the last decade, porphyrin arrays with alkynes [19, 20], benzene [21] or heterocycles (such as thiophene [22], pyridine [23], pyrrole [24, 25]) as bridging units have been intensively studied. Porphyrin dimers with a single carbon or heteroatom bridging unit have received much attention due to their unique photophysical properties, chemical properties, and characteristic electronic delocalization [26-37]. In 2006, Arnold et al. reported the first isolation of meso-meso nitrogen-bridged diporphyrinylamine 1, which showed a broadened Soret band and red shift Q bands, indicating substantial electronic interaction between the porphyrins [27]. Ruppert et al. reported meso-meso, β-meso, β-β-nitrogen-bridged diporphyrinylamines [29], which were all synthesized by Buchwald-Hartwig amination. Later, Osuka et al. reported that meso-meso nitrogen-bridged Ni(Ⅱ) porphyrin dimer was cleanly converted into aminyl radical 2 and nitrenium cation 3 by oxidation with PbO2 and tris(4-bromophenyl)aminiumyl hexachloroantimonate (Magic Blue), respectively (Fig. 1) [34]. As an extension, we report here the synthesis of nitrogen-atom bridged Ni(Ⅱ) porphyrin trimers.

    Figure 1

    Figure 1.  N-Bridged porphyrin oligomers. Ar = 3, 5-di-tert-butylphenyl.

    First we attempted to synthesize linear NH-bridged porphyrin trimer 4Ni-2H by the similar Buchwald-Hartwig amination of 5, 15-dibromo Ni(Ⅱ)porphyrin 7Ni with 5-amino Ni(Ⅱ)porphyrin 6Ni [34]. A 4:1 solution of 6Ni and 7Ni in toluene was heated at 100 ℃ for 12 h in the presence of 0.4 equiv. Pd(OAc)2, 0.4 equiv. BINAP, and 7 equiv. t-BuOK (Scheme 1). To our surprise, only a linear trimer 4Ni bearing a central quinodiimine-type porphyrinoid unit was obtained in 38% yield. The matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrum showed the parent ion of 4Ni at m/z 2627.3453 [M]+ (calcd. for (C172H192N14Ni3)+ = 2627.3509) (Fig. S13 in Supporting information), which is smaller by two than the expected parent ion peak of 4Ni-2H. The structure of 4Ni has been revealed by X-ray diffraction structural analysis (Fig. 2 and Fig. S17 in Supporting information). The bond lengths of C2meso-N (1.300(6) Å and 1.304(6) Å) are distinctly shorter than those of C1meso-N (1.412(6) Å and 1.395(7) Å). The 1H NMR spectrum of 4Ni showed broadened signals at room temperature in CDCl3 (Fig. S3 in Supporting information), which gradually changed to sharp peaks upon cooling down to −60 ℃ (Fig. S4 in Supporting information) [38], suggesting conformational motions at room temperature, which are comparable or faster than 1H NMR timescale. It is noteworthy that four doublets due to the b-protons of the central quinodiimine unit were observed in the up-field shifted region at 7.77, 6.76, 5.70 and 3.99 ppm.

    Scheme 1

    Scheme 1.  Syntheses of meso-meso N-bridged porphyrinoid trimers. Conditions: a) Pd(OAc)2, BINAP, t-BuOK, toluene, 100 ℃, 12 h. Ar = 3, 5-di-tert-butylphenyl.

    Figure 2

    Figure 2.  X-ray single crystal structure of 4Ni and 5Ni. (a) Top view and (b) side view of 4Ni, (c) top view and d) side view of 5Ni. The thermal ellipsoids are on 30% probability level. Solvent molecules, 3, 5-di-tert-butylphenyl groups, and hydrogens are omitted for clarity.

    Similarly, Buchwald-Hartwig amination of 5, 10-dibromo Ni(Ⅱ)porphyrin 8Ni with 6Ni afforded l-shaped bent trimer 5Ni in 25% yield. The quinodiimine structure of 5Ni has been also confirmed by X-ray analysis. 5Ni shows that the bond lengths of C2meso-N (1.299(5) Å and 1.302(6) Å) are shorter than those of C1meso-N bonds (1.399(5) Å and 1.413(6) Å) (Fig. 2 and Fig. S18 in Supporting information). The 1H NMR spectrum of 5Ni showed broadened signals at room temperature that became sharp and complicated signals at −60 ℃ in CDCl3 (Figs. S5 and S6 in Supporting information). In line with the quinodiimine structure, the corresponding β-protons were observed in the high field at 7.07, 6.73, 6.42, 6.33, 5.66, 4.33, and 3.74 ppm.

    The structural data of 4Ni shows that lengths of C1meso-N bonds (1.412(6) Å and 1.395(7) Å) bond to the terminal porphyrin units are longer than C2meso-N (1.300(6) Å and 1.304(6) Å) attached to the central quinodiimine units. Similarly, 5Ni shows that lengths of C1meso-N bonds (1.399(5) Å and 1.413(6) Å) bond to the terminal porphyrin units are longer than C2meso-N (1.299(5) Å and 1.302(6) Å) attached to the central quinodiimine units. The observed short C2meso-N bond lengths in 4Ni and 5Ni indicated its double bond characters significantly [34], which further proved the structure of 4Ni and 5Ni to be N-bridged (rather than NH-bridged) porphyrin trimer. The dihedral angles between the terminal porphyrins and terminal porphyrin, terminal porphyrin and central quinodiimine are 66.81(3)°, 56.34(3)° and 58.06(3)° in 4Ni, and 6.83(3)°, 42.67(3)° and 39.34(3)° in 5Ni (Fig. 2 and Figs. S17 and S18 in Supporting information).

    Electrochemical properties of 4Ni and 5Ni were examined by cyclic voltammetry and differential-pulse voltammetry in CH2Cl2 against a ferrocene/ferrocenium ion couple (Table 1 and Table S4 in Supporting information). Reversible oxidation waves were recorded at 0.22 and 0.52 V for 4Ni, and at 0.12 and 0.23 V for 5Ni. Reversible reduction waves were observed at −1.02 and −1.11 V for 4Ni, and at −0.79 and −1.14 V for 5Ni (Figs. S20 and S21 in Supporting information). As a result, the electrochemical HOMO-LUMO gaps of 4Ni and 5Ni were determined to be 1.24 and 0.91 eV, respectively. The observed reversible reduction waves of 4Ni and 5Ni encouraged us to examine their chemical reduction. After many attempts, we found that reduction of 5Ni with aqueous hydrazine in CH2Cl2 afforded 5Ni-2H quantitatively (Scheme 2). Curiously, 4Ni was not reduced with aqueous hydrazine but was reduced quantitatively to give 4Ni-2H with NaBH4 and Pd/C in CH2Cl2/CH3OH. 1H NMR spectra of both 4Ni-2H and 5Ni-2H are very simple, reflecting their symmetric structures with signals of the β-protons appearing in the range of 8–9 ppm (Fig. 3 and Figs. S7 and S8 in Supporting information). The structure of 5Ni-2H has been confirmed by single crystal X-ray diffraction analysis (Fig. 4 and Fig. S19 in Supporting information). In 5Ni-2H, the bond lengths of the C2meso-N bond and the C1meso-N bond are similar, being 1.409(8) Å, 1.406(8) Å and 1.393(7) Å, 1.434(11) Å, respectively, in line with the assigned structures. In addition, the dihedral angles between the terminal porphyrins and the central porphyrin are 58.29(7)° and 58.15(7)°, which are larger than those on 5Ni (42.67(3)° and 39.34(3)°).

    Table 1

    Table 1.  Electrochemical measurement of 4Ni, 5Ni, 4Ni-2H and 5Ni-2H performed in CH2Cl2 at room temperature.a
    DownLoad: CSV

    Scheme 2

    Scheme 2.  Syntheses of meso-meso NH-bridged porphyrin trimers. Conditions: (a) NaBH4, Pd/C, CH2Cl2/CH3OH; (b) NH2—NH2·H2O, CH2Cl2. Ar = 3, 5-di-tert-butylphenyl.

    Figure 3

    Figure 3.  Partial 1H NMR spectra of (a) 4Ni-2H and (b) 5Ni-2H.

    Figure 4

    Figure 4.  X-ray single crystal structure of 5Ni-2H. (a) Top view and (b) side view. The thermal ellipsoids are on 30% probability level. Solvent molecules, 3, 5-di-tert-butylphenyl groups, and hydrogens except those connected to N atoms are omitted for clarity.

    The unexpected formation of 4Ni and 5Ni may be ascribed to the facile oxidation of 4Ni-2H and 5Ni-2H under the amination reaction conditions. These trimers have the central electron-rich Ni(Ⅱ) porphyrin bearing 5, 15 or 5, 10-aminoporphyrin units. Thus, we examined the electrochemical properties of 4Ni-2H and 5Ni-2H (Table 1 and Table S4 in Supporting information). Actually, the reversible oxidation waves were observed at −0.09 and 0.17 V for 4Ni-2H, and at 0.11, 0.25 and 0.41 V for 5Ni-2H (Figs. S22 and S23 in Supporting information). It is thus conceivable that 4Ni-2H and 5Ni-2H are oxidized under the amination conditions with air. So, when we try to oxidized them with PbO2 and Magic Blue, neither aminyl radical nor nitrenium cation was found. The possible reason may be that the quinodiimine unit is more stable than other species.

    The UV–vis-NIR absorption spectra of 4Ni, 5Ni, 4Ni-2H and 5Ni-2H in CH2Cl2 are shown in Fig. 5. 4Ni shows two split Soret bands at 426 and 472 nm, a Q-band at 537 nm, and a broadened Q-like band at 915 nm. 5Ni shows a Soret band at 429 nm, Q-bands at 540 and 581 nm, and a broadened Q-like band at 892 nm. Both 4Ni and 5Ni exhibit characteristic absorption spectra of quinonoidal porphyrinoid arrays [39-42]. 4Ni-2H shows a Soret band at 423 nm, and a Q-band at 627 nm. Similarly to 4Ni-2H, the absorption spectrum of 5Ni-2H shows a Soret band at 418 nm, and a Q-band at 664 nm. In particular, 4Ni and 5Ni display the lowest energy band reaching to 1200 nm and 1400 nm, respectively.

    Figure 5

    Figure 5.  UV–vis-NIR absorption spectra of 4Ni (black line), 5Ni (red line), 4Ni-2H (blue line) and 5Ni-2H (green line) in CH2Cl2.

    Density functional theory (DFT) calculations clearly indicated that both the HOMO of 4Ni and HOMO-1 5Ni were localized at terminal porphyrin units, whereas both LUMOs of 4Ni and 5Ni were localized at the central quinodiimine units (Figs. S28 and S29 in Supporting information). Time-dependent density functional theory (TD-DFT) calculations indicated that the absorption bands around 1000 nm of trimers 4Ni and 5Ni resulted from the transition from HOMO to LUMO of 4Ni and HOMO-1 to LUMO of 5Ni, respectively (Figs. S24 and S25 in Supporting information). These results show that both absorption bands around 1000 nm of 4Ni and 5Ni could be assigned to charge transfer (CT) band.

    In summary, we synthesized N-bridged porphyrinoid trimers 4Ni and 5Ni having the central quinodiimine through Buchwald-Hartwig amination, under which the oxidations of the NH-bridged porphyrin trimers 4Ni-2H and 5Ni-2H proceeded smoothly. The trimer 4Ni-2H was obtained by reduction with NaBH4 and Pd/C, while 5Ni-2H was obtained by reduction with aqueous hydrazine. The structures of 4Ni, 5Ni and 5Ni-2H were determined by X-ray diffraction analysis. The UV–vis-NIR absorption spectra showed that the trimers 4Ni and 5Ni have the lowest energy band reaching to 1200 nm and 1400 nm, respectively. These N-bridged porphyrinoid trimers exhibited interesting spectral properties. Further exploration of cyclic or larger N-bridged porphyrinoid arrays is ongoing in our laboratory.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    The work at Hunan Normal University was supported by the National Natural Science Foundation of China (Nos. 21772036, 22071052, 21602058, 21702057), the Science and Technology Planning Project of Hunan Province (No. 2018TP1017), and the Scientific Research Fund of Hunan Provincial Education Department (No. 19A331), and Hunan Provincial Innovation Foundation for Postgraduate (No. CX20210473).

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.01.061.


    1. [1]

      Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318(5849), 426-430.  doi: 10.1126/science.1147241

    2. [2]

      Lee, H.; Lee, B. P.; Messersmith, P. B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 2007, 448(7151), 338-341.  doi: 10.1038/nature05968

    3. [3]

      Maier, G. P.; Rapp, M. V.; Waite, J. H.; Israelachvili, J. N.; Butler, A. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science 2015, 349(6248), 628-632.  doi: 10.1126/science.aab0556

    4. [4]

      Yin, X.; Wang, J.; Zhou, J.; Li, L. Mussel-inspired modification of microporous polypropylene membranes for functional catalytic degradation. Chinese J. Polym. Sci. 2015, 33(12), 1721-1729  doi: 10.1007/s10118-015-1726-8

    5. [5]

      Wu, S.; Kuang, H.; Meng, F.; Wu, Y.; Li, X.; Jing X.; Huang, Y. Facile preparation of core cross-linked micelles from catechol-containing amphiphilic triblock copolymer. J. Mate. Chem. 2012, 22(30), 15348-15356.  doi: 10.1039/c2jm32081a

    6. [6]

      Harrington, M. J.; Masic, A.; Holtenandersen, N.; Waite, J. H.; Fratzl, P. Iron-clad fibers: A metal-based biological strategy for hard flexible coatings. Science 2010, 328(5975), 216-220.  doi: 10.1126/science.1181044

    7. [7]

      Fullenkamp, D. E.; Barrett, D. G.; Miller, D. R.; Kurutz, J. W.; Messersmith, P. B. pH-dependent cross-linking of catechols through oxidation via Fe3+ and potential implications for mussel adhesion. RSC Adv. 2014, 4(48), 25127-25134.  doi: 10.1039/C4RA03178D

    8. [8]

      Liu, J.; Ye, Q.; Yu, B.; Wang, X.; Zhou, F. Contact printing a biomimetic catecholic monolayer on a variety of surfaces and derivation reaction. Chem. Commun. 2012, 48(3), 398-400.  doi: 10.1039/C1CC15341B

    9. [9]

      Isakova, A.; Topham, P. D.; Sutherland, A. J. Controlled RAFT polymerization and zinc binding performance of catechol-inspired homopolymers. Macromolecules 2014, 47(8), 2561-2568.  doi: 10.1021/ma500336u

    10. [10]

      Ling, D.; Park, W.; Park, Y. I.; Lee, N.; Li, F.; Song, C.; Yang, S. G.; Choi, S. H.; Na, K.; Hyeon, T. Multiple-interaction ligands inspired by mussel adhesive protein: synthesis of highly stable and biocompatible nanoparticles. Angew. Chem. Int. Ed. 2011, 50(48), 11360-11365.  doi: 10.1002/anie.v50.48

    11. [11]

      Lee, H.; Scherer, N. F.; Messersmith, P. B. Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(35), 12999-13003.  doi: 10.1073/pnas.0605552103

    12. [12]

      Ryou, M. H.; Kim, J.; Lee, I.; Kim, S.; Jeong, Y. K.; Hong, S.; Ryu, J. H.; Kim, T. S.; Park, J. K.; Lee, H. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater. 2013, 25(11), 1571-1576.  doi: 10.1002/adma.201203981

    13. [13]

      Na, H. B.; Palui, G.; Rosenberg, J. T.; Ji, X.; Grant, S. C.; Mattoussi, H. Multidentate catechol-based polyethylene glycol oligomers provide enhanced stability and biocompatibility to iron oxide nanoparticles. ACS Nano 2012, 6(1), 389-399.  doi: 10.1021/nn203735b

    14. [14]

      Lee, Y.; Lee, H.; Kim, Y. B.; Kim, J.; Hyeon, T.; Park, H.; Messersmith, P. B.; Park, T. G. Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging. Adv. Mater. 2008, 20(21), 4154-4157.

    15. [15]

      Westwood, G.; Horton, T. N.; Wilker, J. J. Simplified polymer mimics of cross-linking adhesive proteins. Macromolecules 2007, 40(11), 3960-3964.  doi: 10.1021/ma0703002

    16. [16]

      Stepuk, A.; Halter, J. G.; Schaetz, A.; Grass, R. N.; Stark, W. J. Mussel-inspired load bearing metal-polymer glues. Chem. Commun. 2012, 48(50), 6238-6240.  doi: 10.1039/c2cc31996a

    17. [17]

      Lee, H.; Kang, D. L.; Pyo, K. B.; Park, S. Y.; Lee, H. Catechol-grafted poly(ethylene glycol) for PEGylation on versatile substrates. Langmuir 2010, 26(6), 3790-3793.  doi: 10.1021/la904909h

    18. [18]

      Satoh, H.; Saito, Y.; Yabu, H. Robust platforms for creating organic-inorganic nanocomposite microspheres: decorating polymer microspheres containing mussel-inspired adhesion layers with inorganic nanoparticles. Chem. Commun. 2014, 50(94), 14786-14789.  doi: 10.1039/C4CC05433D

    19. [19]

      Saito, Y.; Yabu, H. Synthesis of poly(dihydroxystyrene-block-styrene) (PDHSt-b-PSt) by the RAFT process and preparation of organic-solvent-dispersive Ag NPs by automatic reduction of metal ions in the presence of PDHSt-b-PSt. Chem. Commun. 2015, 51(18), 3743-3746.  doi: 10.1039/C4CC08366K

    20. [20]

      Li, P.; Chevallier, P.; Ramrup, P.; Biswas, D.; Vuckovic, D.; Fortin, M. A.; Oh, J. K. Mussel-inspired multidentate block copolymer to stabilize ultrasmall superparamagnetic Fe3O4 for magnetic resonance imaging contrast enhancement and excellent colloidal stability. Chem. Mater. 2015, 27(20), 7100-7109.  doi: 10.1021/acs.chemmater.5b03028

    21. [21]

      Saito, Y.; Higuchi, T.; Jinnai, H.; Hara, M.; Nagano, S.; Matsuo, Y.; Yabu, H. Silver nanoparticle arrays prepared by in situ automatic reduction of silver ions in mussel-inspired block copolymer films. Macromol. Chem. Phys. 2016, 217(6), 726-734.  doi: 10.1002/macp.v217.6

    22. [22]

      Cho, J. H.; Shanmuganathan, K.; Ellison, C. J. Bioinspired catecholic copolymers for antifouling surface coatings. ACS Appl. Mater. Interfaces 2013, 5(9), 3794-3802.  doi: 10.1021/am400455p

    23. [23]

      Lee, B. P.; Messersmith, P. B.; Israelachvili, J. N.; Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 2011, 41(1), 99-132.  doi: 10.1146/annurev-matsci-062910-100429

    24. [24]

      Chen, J.; Yu, C.; Shi, Z.; Yu, S.; Lu, Z.; Jiang, W.; Zhang, M.; He, W.; Zhou, Y.; Yan, D. Ultrathin alternating copolymer nanotubes with readily tunable surface functionalities. Angew. Chem. Int. Ed. 2015, 54(12), 3621-3625.  doi: 10.1002/anie.201408290

    25. [25]

      Li, C.; Chen, C.; Li, S.; Rasheed, T.; Huang, P.; Huang, T.; Zhang, Y.; Huang, W.; Zhou, Y. Self-assembly and functionalization of alternating copolymer vesicles. Polym. Chem. 2017, 8(32), 4688-4695.  doi: 10.1039/C7PY00908A

    26. [26]

      Cao, M. H.; Liu, T. F.; Gao, S. Single-crystal dendritic micro-pines of magnetic α-Fe2O3: large-scale synthesis, formation mechanism, and properties. Angew. Chem. Int. Ed. 2005, 44(27), 4197-4201.  doi: 10.1002/(ISSN)1521-3773

    27. [27]

      Lv, X.; Deng, J.; Wang, J.; Zhong, J.; Sun, X. Carbon-coated α-Fe2O3 nanostructures for efficient anode of Li-ion battery. J. Mater. Chem. A 2015, 3(9), 5183-5188.  doi: 10.1039/C4TA06415A

    28. [28]

      Wang, B.; Chen, J. S.; Lou X. W. The comparative lithium storage properties of urchin-like hematite spheres: hollow vs. solid. J. Mater. Chem. 2012, 22(19), 9466-9468.  doi: 10.1039/c2jm31108a

    29. [29]

      Filippidi, E.; Cristiani, T. R.; Eisenbach, C. D.; Waite, J. H.; Israelachvili, J. N.; Ahn, B. K.; Valentine, M. T. Toughening elastomers using mussel-inspired iron-catechol complexes, Science 2017, 358(6362), 502-505.  doi: 10.1126/science.aao0350

    30. [30]

      Zeng, H.; Hwang, D. S.; Israelachvili, J. N.; Waite, J. H. Strong reversible Fe3+-mediated bridging between DOPA-containing protein films in water. Proc. Natl. Acad. Sci. U. S. A. 2010, 107(29), 12850-12853.  doi: 10.1073/pnas.1007416107

    31. [31]

      Monahan, J.; Wilker, J. J. Specificity of metal ion cross-linking in marine mussel adhesives. Chem. Commun. 2003, 14(14), 1672-1673.

    32. [32]

      Liu, Q.; Lu, X.; Li, L.; Zhang, H.; Liu, G.; Zhong, H.; Zeng, H. Probing the reversible Fe3+-DOPA-mediated bridging interaction in mussel foot protein-1. J. Phys. Chem. C 2016, 120(38), 21670-21677  doi: 10.1021/acs.jpcc.6b07482

    33. [33]

      Hwang, D. S.; Zeng, H.; Masic, A.; Harrington, M. J.; Fratzl, P.; Israelachvili, J.; Waite, J. H. Protein-and metal-dependent interactions of a prominent protein in mussel adhesive plaques. J. Biol. Chem. 2010, 285(33), 25850-25858.  doi: 10.1074/jbc.M110.133157

    34. [34]

      Lu, Q.; Hwang, D. S.; Liu, Y.; Zeng, H. Molecular interactions of mussel protective coating protein, mcfp-1, from Mytilus californianus. Biomaterials 2012, 33(6), 1903-1911.  doi: 10.1016/j.biomaterials.2011.11.021

    35. [35]

      Holtenandersen, X.; Mates, T. E.; Toprak, M. S.; Stucky, G. D.; Zok, F. W.; Waite, J. H. Metals and the integrity of a biological coating: the cuticle of mussel byssus. Langmuir 2009, 25(6), 3323-3326.  doi: 10.1021/la8027012

    36. [36]

      Liao, J. X.; Huang, J. H.; Wang, T.; Sun, W. X.; Tong, Z. Rapid shape memory and pH-modulated spontaneous actuation of dopamine containing hydrogels. Chinese J. Polym. Sci. 2017, 35(10), 1297-1306  doi: 10.1007/s10118-017-1991-9

    37. [37]

      Dong, M. J.; Liu, S. L.; Tan, L. H.; Cen, L.; Fu, G. D. Hydrogels of chemically cross-linked and organ-metallic complexed interpenetrating PEG networks. Chinese J. Polym. Sci. 2016, 34(5), 637-648  doi: 10.1007/s10118-016-1783-7

    38. [38]

      Zhang, H.; Sun, X.; Huang, X.; Zhou, L. Encapsulation of α-Fe2O3 nanoparticles in graphitic carbon microspheres as high-performance anode materials for lithium-ion batteries. Nanoscale 2015, 7(7), 3270-3275.  doi: 10.1039/C4NR06771A

    39. [39]

      Guo, W.; Sun, W.; Lv, L. P.; Kong, S.; Wang, Y. Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for li-ion storage. ACS Nano 2017, 11(4), 4198-4205.  doi: 10.1021/acsnano.7b01152

    40. [40]

      Wang, Y.; Guo, X.; Wang, Z.; Lü, M.; Wu, B.; Wang, Y.; Yan, C.; Yuan, A.; Yang, H. Controlled pyrolysis of MIL-88A to Fe2O3@C nanocomposites with varied morphologies and phases for advanced lithium storage. J. Mater. Chem. A 2017, 48(5), 25562-25573.

    41. [41]

      Wang, Z.; Luan, D.; Madhavi, S.; Hu, Y.; Lou, X. W. Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ. Sci. 2012, 5(1), 5252-5256.  doi: 10.1039/C1EE02831F

    42. [42]

      Xu, X.; Cao, R.; Jeong, S.; Cho, J. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett. 2012, 12(9), 4988-4991.  doi: 10.1021/nl302618s

    43. [43]

      Wang, Y.; Han, J.; Gu, X.; Dimitrijev, S.; Hou, Y.; Zhang, S. Ultrathin Fe2O3 nanoflakes using smart chemical stripping for high performance lithium storage. J. Mater. Chem. A 2017, 5(35), 18737-18743.  doi: 10.1039/C7TA05798A

    44. [44]

      Cao, K.; Jiao, L.; Liu, H.; Liu, Y.; Wang, Y.; Guo, Z.; Yuan, H. 3D Hierarchical porous α-Fe2O3 nanosheets for high-performance lithium-ion batteries. Adv. Energy Mater. 2015, 5(4), 1401421.  doi: 10.1002/aenm.201401421

    45. [45]

      Yang, Y.; Liu, Y.; Pu, K.; Chen, X.; Tian, H.; Gao, M.; Zhu, M.; Pan, H. Highly stable cycling of amorphous Li2CO3-coated α-Fe2O3 nanocrystallines prepared via a new mechanochemical strategy for Li-ion batteries. Adv. Funct. Mater. 2017, 27(3), 1605011.  doi: 10.1002/adfm.v27.3

    46. [46]

      Varcoe, J. R.; Atanassov, P.; Dekel, D. R.; Herring, A. M.; Hickner, M. A.; Kohl, P. A.; Kucernak, A. R.; Mustain, W. E.; Nijmeijer, K.; Scott, K. Anion-exchange membranes in electrochemical energy systems. Energy. Environ. Sci. 2014, 7(10), 3135-3191.  doi: 10.1039/C4EE01303D

    47. [47]

      Li, X.; Ma, Y.; Qin, L.; Zhang, Z.; Zhang, Z.; Zheng, Y. Z.; Qu, Y. A bottom-up synthesis of α-Fe2O3 nanoaggregates and their composites with graphene as high performance anodes in lithium-ion batteries. J. Mater. Chem. A 2015, 3(5), 2158-2165.  doi: 10.1039/C4TA05420B

    1. [1]

      Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318(5849), 426-430.  doi: 10.1126/science.1147241

    2. [2]

      Lee, H.; Lee, B. P.; Messersmith, P. B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 2007, 448(7151), 338-341.  doi: 10.1038/nature05968

    3. [3]

      Maier, G. P.; Rapp, M. V.; Waite, J. H.; Israelachvili, J. N.; Butler, A. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science 2015, 349(6248), 628-632.  doi: 10.1126/science.aab0556

    4. [4]

      Yin, X.; Wang, J.; Zhou, J.; Li, L. Mussel-inspired modification of microporous polypropylene membranes for functional catalytic degradation. Chinese J. Polym. Sci. 2015, 33(12), 1721-1729  doi: 10.1007/s10118-015-1726-8

    5. [5]

      Wu, S.; Kuang, H.; Meng, F.; Wu, Y.; Li, X.; Jing X.; Huang, Y. Facile preparation of core cross-linked micelles from catechol-containing amphiphilic triblock copolymer. J. Mate. Chem. 2012, 22(30), 15348-15356.  doi: 10.1039/c2jm32081a

    6. [6]

      Harrington, M. J.; Masic, A.; Holtenandersen, N.; Waite, J. H.; Fratzl, P. Iron-clad fibers: A metal-based biological strategy for hard flexible coatings. Science 2010, 328(5975), 216-220.  doi: 10.1126/science.1181044

    7. [7]

      Fullenkamp, D. E.; Barrett, D. G.; Miller, D. R.; Kurutz, J. W.; Messersmith, P. B. pH-dependent cross-linking of catechols through oxidation via Fe3+ and potential implications for mussel adhesion. RSC Adv. 2014, 4(48), 25127-25134.  doi: 10.1039/C4RA03178D

    8. [8]

      Liu, J.; Ye, Q.; Yu, B.; Wang, X.; Zhou, F. Contact printing a biomimetic catecholic monolayer on a variety of surfaces and derivation reaction. Chem. Commun. 2012, 48(3), 398-400.  doi: 10.1039/C1CC15341B

    9. [9]

      Isakova, A.; Topham, P. D.; Sutherland, A. J. Controlled RAFT polymerization and zinc binding performance of catechol-inspired homopolymers. Macromolecules 2014, 47(8), 2561-2568.  doi: 10.1021/ma500336u

    10. [10]

      Ling, D.; Park, W.; Park, Y. I.; Lee, N.; Li, F.; Song, C.; Yang, S. G.; Choi, S. H.; Na, K.; Hyeon, T. Multiple-interaction ligands inspired by mussel adhesive protein: synthesis of highly stable and biocompatible nanoparticles. Angew. Chem. Int. Ed. 2011, 50(48), 11360-11365.  doi: 10.1002/anie.v50.48

    11. [11]

      Lee, H.; Scherer, N. F.; Messersmith, P. B. Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(35), 12999-13003.  doi: 10.1073/pnas.0605552103

    12. [12]

      Ryou, M. H.; Kim, J.; Lee, I.; Kim, S.; Jeong, Y. K.; Hong, S.; Ryu, J. H.; Kim, T. S.; Park, J. K.; Lee, H. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater. 2013, 25(11), 1571-1576.  doi: 10.1002/adma.201203981

    13. [13]

      Na, H. B.; Palui, G.; Rosenberg, J. T.; Ji, X.; Grant, S. C.; Mattoussi, H. Multidentate catechol-based polyethylene glycol oligomers provide enhanced stability and biocompatibility to iron oxide nanoparticles. ACS Nano 2012, 6(1), 389-399.  doi: 10.1021/nn203735b

    14. [14]

      Lee, Y.; Lee, H.; Kim, Y. B.; Kim, J.; Hyeon, T.; Park, H.; Messersmith, P. B.; Park, T. G. Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging. Adv. Mater. 2008, 20(21), 4154-4157.

    15. [15]

      Westwood, G.; Horton, T. N.; Wilker, J. J. Simplified polymer mimics of cross-linking adhesive proteins. Macromolecules 2007, 40(11), 3960-3964.  doi: 10.1021/ma0703002

    16. [16]

      Stepuk, A.; Halter, J. G.; Schaetz, A.; Grass, R. N.; Stark, W. J. Mussel-inspired load bearing metal-polymer glues. Chem. Commun. 2012, 48(50), 6238-6240.  doi: 10.1039/c2cc31996a

    17. [17]

      Lee, H.; Kang, D. L.; Pyo, K. B.; Park, S. Y.; Lee, H. Catechol-grafted poly(ethylene glycol) for PEGylation on versatile substrates. Langmuir 2010, 26(6), 3790-3793.  doi: 10.1021/la904909h

    18. [18]

      Satoh, H.; Saito, Y.; Yabu, H. Robust platforms for creating organic-inorganic nanocomposite microspheres: decorating polymer microspheres containing mussel-inspired adhesion layers with inorganic nanoparticles. Chem. Commun. 2014, 50(94), 14786-14789.  doi: 10.1039/C4CC05433D

    19. [19]

      Saito, Y.; Yabu, H. Synthesis of poly(dihydroxystyrene-block-styrene) (PDHSt-b-PSt) by the RAFT process and preparation of organic-solvent-dispersive Ag NPs by automatic reduction of metal ions in the presence of PDHSt-b-PSt. Chem. Commun. 2015, 51(18), 3743-3746.  doi: 10.1039/C4CC08366K

    20. [20]

      Li, P.; Chevallier, P.; Ramrup, P.; Biswas, D.; Vuckovic, D.; Fortin, M. A.; Oh, J. K. Mussel-inspired multidentate block copolymer to stabilize ultrasmall superparamagnetic Fe3O4 for magnetic resonance imaging contrast enhancement and excellent colloidal stability. Chem. Mater. 2015, 27(20), 7100-7109.  doi: 10.1021/acs.chemmater.5b03028

    21. [21]

      Saito, Y.; Higuchi, T.; Jinnai, H.; Hara, M.; Nagano, S.; Matsuo, Y.; Yabu, H. Silver nanoparticle arrays prepared by in situ automatic reduction of silver ions in mussel-inspired block copolymer films. Macromol. Chem. Phys. 2016, 217(6), 726-734.  doi: 10.1002/macp.v217.6

    22. [22]

      Cho, J. H.; Shanmuganathan, K.; Ellison, C. J. Bioinspired catecholic copolymers for antifouling surface coatings. ACS Appl. Mater. Interfaces 2013, 5(9), 3794-3802.  doi: 10.1021/am400455p

    23. [23]

      Lee, B. P.; Messersmith, P. B.; Israelachvili, J. N.; Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 2011, 41(1), 99-132.  doi: 10.1146/annurev-matsci-062910-100429

    24. [24]

      Chen, J.; Yu, C.; Shi, Z.; Yu, S.; Lu, Z.; Jiang, W.; Zhang, M.; He, W.; Zhou, Y.; Yan, D. Ultrathin alternating copolymer nanotubes with readily tunable surface functionalities. Angew. Chem. Int. Ed. 2015, 54(12), 3621-3625.  doi: 10.1002/anie.201408290

    25. [25]

      Li, C.; Chen, C.; Li, S.; Rasheed, T.; Huang, P.; Huang, T.; Zhang, Y.; Huang, W.; Zhou, Y. Self-assembly and functionalization of alternating copolymer vesicles. Polym. Chem. 2017, 8(32), 4688-4695.  doi: 10.1039/C7PY00908A

    26. [26]

      Cao, M. H.; Liu, T. F.; Gao, S. Single-crystal dendritic micro-pines of magnetic α-Fe2O3: large-scale synthesis, formation mechanism, and properties. Angew. Chem. Int. Ed. 2005, 44(27), 4197-4201.  doi: 10.1002/(ISSN)1521-3773

    27. [27]

      Lv, X.; Deng, J.; Wang, J.; Zhong, J.; Sun, X. Carbon-coated α-Fe2O3 nanostructures for efficient anode of Li-ion battery. J. Mater. Chem. A 2015, 3(9), 5183-5188.  doi: 10.1039/C4TA06415A

    28. [28]

      Wang, B.; Chen, J. S.; Lou X. W. The comparative lithium storage properties of urchin-like hematite spheres: hollow vs. solid. J. Mater. Chem. 2012, 22(19), 9466-9468.  doi: 10.1039/c2jm31108a

    29. [29]

      Filippidi, E.; Cristiani, T. R.; Eisenbach, C. D.; Waite, J. H.; Israelachvili, J. N.; Ahn, B. K.; Valentine, M. T. Toughening elastomers using mussel-inspired iron-catechol complexes, Science 2017, 358(6362), 502-505.  doi: 10.1126/science.aao0350

    30. [30]

      Zeng, H.; Hwang, D. S.; Israelachvili, J. N.; Waite, J. H. Strong reversible Fe3+-mediated bridging between DOPA-containing protein films in water. Proc. Natl. Acad. Sci. U. S. A. 2010, 107(29), 12850-12853.  doi: 10.1073/pnas.1007416107

    31. [31]

      Monahan, J.; Wilker, J. J. Specificity of metal ion cross-linking in marine mussel adhesives. Chem. Commun. 2003, 14(14), 1672-1673.

    32. [32]

      Liu, Q.; Lu, X.; Li, L.; Zhang, H.; Liu, G.; Zhong, H.; Zeng, H. Probing the reversible Fe3+-DOPA-mediated bridging interaction in mussel foot protein-1. J. Phys. Chem. C 2016, 120(38), 21670-21677  doi: 10.1021/acs.jpcc.6b07482

    33. [33]

      Hwang, D. S.; Zeng, H.; Masic, A.; Harrington, M. J.; Fratzl, P.; Israelachvili, J.; Waite, J. H. Protein-and metal-dependent interactions of a prominent protein in mussel adhesive plaques. J. Biol. Chem. 2010, 285(33), 25850-25858.  doi: 10.1074/jbc.M110.133157

    34. [34]

      Lu, Q.; Hwang, D. S.; Liu, Y.; Zeng, H. Molecular interactions of mussel protective coating protein, mcfp-1, from Mytilus californianus. Biomaterials 2012, 33(6), 1903-1911.  doi: 10.1016/j.biomaterials.2011.11.021

    35. [35]

      Holtenandersen, X.; Mates, T. E.; Toprak, M. S.; Stucky, G. D.; Zok, F. W.; Waite, J. H. Metals and the integrity of a biological coating: the cuticle of mussel byssus. Langmuir 2009, 25(6), 3323-3326.  doi: 10.1021/la8027012

    36. [36]

      Liao, J. X.; Huang, J. H.; Wang, T.; Sun, W. X.; Tong, Z. Rapid shape memory and pH-modulated spontaneous actuation of dopamine containing hydrogels. Chinese J. Polym. Sci. 2017, 35(10), 1297-1306  doi: 10.1007/s10118-017-1991-9

    37. [37]

      Dong, M. J.; Liu, S. L.; Tan, L. H.; Cen, L.; Fu, G. D. Hydrogels of chemically cross-linked and organ-metallic complexed interpenetrating PEG networks. Chinese J. Polym. Sci. 2016, 34(5), 637-648  doi: 10.1007/s10118-016-1783-7

    38. [38]

      Zhang, H.; Sun, X.; Huang, X.; Zhou, L. Encapsulation of α-Fe2O3 nanoparticles in graphitic carbon microspheres as high-performance anode materials for lithium-ion batteries. Nanoscale 2015, 7(7), 3270-3275.  doi: 10.1039/C4NR06771A

    39. [39]

      Guo, W.; Sun, W.; Lv, L. P.; Kong, S.; Wang, Y. Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for li-ion storage. ACS Nano 2017, 11(4), 4198-4205.  doi: 10.1021/acsnano.7b01152

    40. [40]

      Wang, Y.; Guo, X.; Wang, Z.; Lü, M.; Wu, B.; Wang, Y.; Yan, C.; Yuan, A.; Yang, H. Controlled pyrolysis of MIL-88A to Fe2O3@C nanocomposites with varied morphologies and phases for advanced lithium storage. J. Mater. Chem. A 2017, 48(5), 25562-25573.

    41. [41]

      Wang, Z.; Luan, D.; Madhavi, S.; Hu, Y.; Lou, X. W. Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ. Sci. 2012, 5(1), 5252-5256.  doi: 10.1039/C1EE02831F

    42. [42]

      Xu, X.; Cao, R.; Jeong, S.; Cho, J. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett. 2012, 12(9), 4988-4991.  doi: 10.1021/nl302618s

    43. [43]

      Wang, Y.; Han, J.; Gu, X.; Dimitrijev, S.; Hou, Y.; Zhang, S. Ultrathin Fe2O3 nanoflakes using smart chemical stripping for high performance lithium storage. J. Mater. Chem. A 2017, 5(35), 18737-18743.  doi: 10.1039/C7TA05798A

    44. [44]

      Cao, K.; Jiao, L.; Liu, H.; Liu, Y.; Wang, Y.; Guo, Z.; Yuan, H. 3D Hierarchical porous α-Fe2O3 nanosheets for high-performance lithium-ion batteries. Adv. Energy Mater. 2015, 5(4), 1401421.  doi: 10.1002/aenm.201401421

    45. [45]

      Yang, Y.; Liu, Y.; Pu, K.; Chen, X.; Tian, H.; Gao, M.; Zhu, M.; Pan, H. Highly stable cycling of amorphous Li2CO3-coated α-Fe2O3 nanocrystallines prepared via a new mechanochemical strategy for Li-ion batteries. Adv. Funct. Mater. 2017, 27(3), 1605011.  doi: 10.1002/adfm.v27.3

    46. [46]

      Varcoe, J. R.; Atanassov, P.; Dekel, D. R.; Herring, A. M.; Hickner, M. A.; Kohl, P. A.; Kucernak, A. R.; Mustain, W. E.; Nijmeijer, K.; Scott, K. Anion-exchange membranes in electrochemical energy systems. Energy. Environ. Sci. 2014, 7(10), 3135-3191.  doi: 10.1039/C4EE01303D

    47. [47]

      Li, X.; Ma, Y.; Qin, L.; Zhang, Z.; Zhang, Z.; Zheng, Y. Z.; Qu, Y. A bottom-up synthesis of α-Fe2O3 nanoaggregates and their composites with graphene as high performance anodes in lithium-ion batteries. J. Mater. Chem. A 2015, 3(5), 2158-2165.  doi: 10.1039/C4TA05420B

  • 加载中
    1. [1]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    2. [2]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    3. [3]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    4. [4]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    5. [5]

      Hao ZhangHao LiuKe HuangQingxiu XiaHongjie XiongXiaohui LiuHui JiangXuemei Wang . Ionic exchange based intracellular self-assembly of pitaya-structured nanoparticles for tumor imaging. Chinese Chemical Letters, 2025, 36(6): 110281-. doi: 10.1016/j.cclet.2024.110281

    6. [6]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    7. [7]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    8. [8]

      Shengyong LiuHui LiWei ZhangYan ZhangYan DongWei Tian . Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition. Chinese Chemical Letters, 2025, 36(6): 110465-. doi: 10.1016/j.cclet.2024.110465

    9. [9]

      Mingzhu JiangPanqing WangQiheng ChenYue ZhangQi WuLei TanTianxiang NingLingjun LiKangyu Zou . Enabling the Nb/Ti co-doping strategy for improving structure stability and rate capability of Ni-rich cathode. Chinese Chemical Letters, 2025, 36(6): 110040-. doi: 10.1016/j.cclet.2024.110040

    10. [10]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    11. [11]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    12. [12]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    13. [13]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    14. [14]

      Fengying YeMing HuJun LuoWei YuZhirong XuJinjin FuYansong Zheng . Significantly boosting circularly polarized luminescence by synergy of helical and planar chirality. Chinese Chemical Letters, 2025, 36(5): 110724-. doi: 10.1016/j.cclet.2024.110724

    15. [15]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    16. [16]

      Yongjian LiXinyu ZhuChenxi WeiYouyou FangXinyu WangYizhi ZhaiWenlong KangLai ChenDuanyun CaoMeng WangYun LuQing HuangYuefeng SuHong YuanNing LiFeng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536

    17. [17]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    18. [18]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

    19. [19]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    20. [20]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

Metrics
  • PDF Downloads(0)
  • Abstract views(989)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return