Diffusion and Relaxation Dynamics of Supercooled Polymer Melts
English
Diffusion and Relaxation Dynamics of Supercooled Polymer Melts
, increases and then reaches a plateau. The curves of the height of the first peak of
,
, versus
and the curves of χ
versus
follow two master curves for different chain lengths. Our results indicate the similarity of dynamic heterogeneity dominated by the motion of single bead even the chain length is different. It is interesting to find that the Stokes-Einstein (SE) relation between
and diffusion coefficient D, D~τ
, is highly length-scale dependent. The SE relation breaks down in both normal melts regime and supercooled regime at large magnitude of wave vectors, attributed to the non-Brownian motion arising from the chain connectivity and growing heterogeneity due to supercooling. However, the SE relation is reconstructed when the probing length scale is large (at small magnitude of wave vectors). Our results show a hierarchical physical picture of the supercooled polymeric dynamics.-
Key words:
- Supercooled polymer melt
- / Molecular dynamics simulation
- / Diffusion
- / Relaxation
-
-
-
[1]
Colmenero, J. Are polymers standard glass-forming systems? The role of intramolecular barriers on the glass-transition phenomena of glass-forming polymers J. Phys.: Condens. Matter 2015, 27, 103101 doi: 10.1088/0953-8984/27/10/103101
-
[2]
Rouse, P. E. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 1953, 21, 1272−1280 doi: 10.1063/1.1699180
-
[3]
de Gennes, P. G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 1971, 55, 572−579 doi: 10.1063/1.1675789
-
[4]
Doi, M. and Edwards, S. F. " The theory of polymer dynamics”, Oxford University Press, 1986.
-
[5]
de Gennes, P. G. " Scaling concepts in polymer physic”, Cornell University Press, 1979.
-
[6]
Angell, C. A.; Ngai, K. L.; McKenna, G. B.; McMillan, P. F.; Martin, S. W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 2000, 88, 3113−3157 doi: 10.1063/1.1286035
-
[7]
Cavagna, A. Supercooled liquids for pedestrians. Phys. Rep. 2009, 476, 51−124 doi: 10.1016/j.physrep.2009.03.003
-
[8]
Berthier, L.; Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 2011, 83, 587−645 doi: 10.1103/RevModPhys.83.587
-
[9]
Ediger, M. D.; Harrowell, P. Perspective: Supercooled liquids and glasses. J. Chem. Phys. 2012, 137, 080901 doi: 10.1063/1.4747326
-
[10]
Biroli, G.; Garrahan, J. P. Perspective: The glass transition. J. Chem. Phys. 2013, 138, 12A301 doi: 10.1063/1.4795539
-
[11]
Cangialosi, D. Dynamics and thermodynamics of polymer glasses. J. Phys.: Condens. Matter 2014, 26, 153101 doi: 10.1088/0953-8984/26/15/153101
-
[12]
Götze, W. " Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory”, Oxford University Press 2008.
-
[13]
Chong, S. H.; Fuchs, M. Mode-coupling theory for structural and conformational dynamics of polymer melts. Phys. Rev. Lett. 2002, 88, 185702 doi: 10.1103/PhysRevLett.88.185702
-
[14]
Chong, S. H.; Aichele, M.; Meyer, H.; Fuchs, M.; Baschnagel, J. Structural and conformational dynamics of supercooled polymer melts: insights from first-principles theory and simulations. Phys. Rev. E 2007, 76, 051806 doi: 10.1103/PhysRevE.76.051806
-
[15]
Bennemann, C.; Baschnagela, J.; Paul, W. Molecular-dynamics simulation of a glassy polymer melt: Incoherent scattering function. Eur. Phys. J. B 1999, 10, 323−334 doi: 10.1007/s100510050861
-
[16]
Aichele, M.; Baschnagel, J. Glassy dynamics of simulated polymer melts: Coherent scattering and van Hove correlation functions-Part I: Dynamics in the β-relaxation regime. Eur. Phys. J. E 2001, 5, 229−243 doi: 10.1007/s101890170078
-
[17]
Aichele, M.; Baschnagel, J. Glassy dynamics of simulated polymer melts: Coherent scattering and van Hove correlation functions-Part II: Dynamics in the α-relaxation regime. Eur. Phys. J. E 2001, 5, 245−256 doi: 10.1007/s101890170079
-
[18]
Frey, S.; Weysser, F.; Meyer, H.; Farago, J.; Fuchs, M.; Baschnagel, J. Simulated glass-forming polymer melts: Dynamic scattering functions, chain length effects, and mode-coupling theory analysis. Eur. Phys. J. E 2015, 38, 11 doi: 10.1140/epje/i2015-15011-x
-
[19]
Bernabei, M.; Moreno, A. J.; Zaccarelli, E.; Sciortino, F.; Colmenero, J. From caging to Rouse dynamics in polymer melts with intramolecular barriers: A critical test of the mode coupling theory. J. Chem. Phys. 2011, 134, 024523 doi: 10.1063/1.3525147
-
[20]
Colmenero, J.; Narros, A.; Alvarez, F.; Arbe, A.; Moreno, A. J. Atomic motions in the αβ-region of glass-forming polymers: molecular versus mode coupling theory approach. J. Phys.: Condens. Matter 2007, 19, 205127 doi: 10.1088/0953-8984/19/20/205127
-
[21]
Khairy, Y.; Alvarez, F.; Arbe, A.; Colmenero, J. Applicability of mode-coupling theory to polyisobutylene: A molecular dynamics simulation study. Phys. Rev. E 2013, 88, 042302
-
[22]
Frick, B.; Zorn, R.; Richter, D.; Farago, B. Investigation of the glass transition in polymers under the aspect of mode coupling predictions. J. Non-cryst. Solids 1991, 131, 169−176
-
[23]
Zorn, R.; Richter, D.; Frick, B.; Farago, B. Neutron scattering experiments on the glass transition of polymers. Physica A 1993, 201, 52−66 doi: 10.1016/0378-4371(93)90399-O
-
[24]
Bergman, R.; Börjesson, L.; Torell, L. M.; Fontana, A. Dynamics around the liquid-glass transition in poly(propylene-glycol) investigated by wide-frequency-range light-scattering techniques. Phys. Rev. B 1997, 56, 11619−11628 doi: 10.1103/PhysRevB.56.11619
-
[25]
Capponi, S.; Arbe, A.; Alvarez, F.; Colmenero, J.; Frick, B.; Embs, J. P. Atomic motions in poly(vinyl methyl ether): A combined study by quasielastic neutron scattering and molecular dynamics simulations in the light of the mode coupling theory. J. Chem. Phys. 2016, 131, 204901
-
[26]
Zhang, B.; Li, H.; Li, J.; Chen, K.; Tian, W.; Ma, Y. The unique role of bond length in the glassy dynamics of colloidal polymers. Soft Matter 2016, 12, 8104−8111 doi: 10.1039/C6SM01386D
-
[27]
Li, J.; Zhang, B.; Li, H.; Chen, K.; Tian, W.; Tong, P. Glassy dynamics of model colloidal polymers: The effect of " monomer” size. J. Chem. Phys. 2016, 144, 204509 doi: 10.1063/1.4952605
-
[28]
Bernabei, M.; Moreno, A. J.; Colmenero, J. Dynamic arrest in polymer melts: competition between packing and intramolecular barriers. Phys. Rev. Lett. 2008, 101, 255701 doi: 10.1103/PhysRevLett.101.255701
-
[29]
Yamamoto, R.; Onuki, A. Heterogeneous diffusion in highly supercooled liquids. Phys. Rev. Lett. 1998, 81, 4915−4918 doi: 10.1103/PhysRevLett.81.4915
-
[30]
Jung, Y. J.; Garrahan, J. P.; Chandler, D. Excitation lines and the breakdown of Stokes-Einstein relations in supercooled liquids. Phys. Rev. E 2004, 69, 061205 doi: 10.1103/PhysRevE.69.061205
-
[31]
Ikeda, A.; Miyazaki, K. Glass transition of the monodisperse gaussian core model. Phys. Rev. Lett. 2011, 106, 015701 doi: 10.1103/PhysRevLett.106.015701
-
[32]
Li, Y. W.; Zhu, Y. L.; Sun Z. Y. Decoupling of relaxation and diffusion in random pinning glass-forming liquids. J. Chem. Phys. 2015, 142, 124507 doi: 10.1063/1.4916208
-
[33]
Chen, S. H.; Mallamace, F.; Mou, C. Y.; Broccio, M.; Corsaro, C.; Faraone, A.; Liu, L. The violation of the Stokes-Einstein relation in supercooled water. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 12974−12978 doi: 10.1073/pnas.0603253103
-
[34]
Xu, L.; Mallamace, F.; Yan, Z.; Starr, F. W.; Buldyrev, S. V.; Stanley, H. E. Appearance of a fractional Stokes-Einstein relation in water and a structural interpretation of its onset. Nat. Phys. 2009, 5, 565−569 doi: 10.1038/nphys1328
-
[35]
Flenner, E.; Szamel, G. Dynamic heterogeneities above and below the mode-coupling temperature: Evidence of a dynamic crossover. J. Chem. Phys. 2013, 138, 12A523 doi: 10.1063/1.4773321
-
[36]
Berthier, L. Time and length scales in supercooled liquids. Phys. Rev. E 2004, 69, 020201 doi: 10.1103/PhysRevE.69.020201
-
[37]
Kawasaki, T.; Onuki, A. Slow relaxations and stringlike jump motions in fragile glass-forming liquids: Breakdown of the Stokes-Einstein relation. Phys. Rev. E 2013, 87, 012312
-
[38]
Shi, Z.; Debenedetti, P. G.; Stillinger, F. H. Relaxation processes in liquids: Variations on a theme by Stokes and Einstein. J. Chem. Phys. 2013, 138, 12A526 doi: 10.1063/1.4775741
-
[39]
Sengupta, S.; Karmakar, S.; Dasgupta, C.; Sastry, S. Breakdown of the Stokes-Einstein relation in two, three, and four dimensions. J. Chem. Phys. 2013, 138, 12A548 doi: 10.1063/1.4792356
-
[40]
Sengupta, S.; Karmakar, S. Distribution of diffusion constants and Stokes-Einstein violation in supercooled liquids. J. Chem. Phys. 2014, 140, 224505 doi: 10.1063/1.4882066
-
[41]
Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 2000, 51, 99−128 doi: 10.1146/annurev.physchem.51.1.99
-
[42]
Baschnagel, J.; Varnik, F. Computer simulations of supercooled polymer melts in the bulk and in-confined geometry. J. Phys.: Condens. Matter 2005, 17, R851−R953 doi: 10.1088/0953-8984/17/32/R02
-
[43]
Lang, R. J.; Simmons, D. S. Interfacial dynamic length scales in the glass transition of a model freestanding polymer film and their connection to cooperative motion. Macromolecules 2013, 46, 9818−9825 doi: 10.1021/ma401525q
-
[44]
Merling, W. L.; Mileski, J. B.; Douglas, J. F.; Simmons, D. S. The glass transition of a single macromolecule. Macromolecules 2016, 49, 7597−7604 doi: 10.1021/acs.macromol.6b01461
-
[45]
Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. J. Chem. Phys. 1990, 92, 5057−5086 doi: 10.1063/1.458541
-
[46]
Liu, Y.; Tuckerman, M. E. Generalized gaussian moment thermostatting: A new continuous dynamical approach to the canonical ensemble. J. Chem. Phys. 2000, 112, 1685−1700 doi: 10.1063/1.480769
-
[47]
Bennemann, C.; Paul, W.; Binder, K.; Dunweg, B. Molecular-dynamics simulations of the thermal glass transition in polymer melts α-relaxation behavior. Phys. Rev. E 1998, 57, 843−851 doi: 10.1103/PhysRevE.57.843
-
[48]
Aichele, M.; Gebremichael, Y.; Starr, F. W.; Baschnagel, J.; Glotzer, S. C. Polymer-specific effects of bulk relaxation and stringlike correlated motion in the dynamics of a supercooled polymer melt. J. Chem. Phys. 2003, 199, 5290−5304
-
[49]
Wang, Z.; Likhtman, A. E.; Larson, R. G. Segmental dynamics in entangled linear polymer melts. Macromolecules 2012, 45, 3557−3570 doi: 10.1021/ma202759v
-
[50]
Kob, W.; Andersen, H. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture. II. Intermediate scattering function and dynamic susceptibility. Phys. Rev. E 1995, 52, 4134−4153 doi: 10.1103/PhysRevE.52.4134
-
[51]
Bennemann, C.; Paul, W.; Baschnagel, J.; Binder, K. Investigating the influence of different thermodynamic paths on the structural relaxation in a glass-forming polymer melt. J. Phys.: Condens. Matter 1999, 11, 2179−2192 doi: 10.1088/0953-8984/11/10/005
-
[52]
Bennemann, C.; Baschnagel, J.; Paul, W.; Binder, K. Molecular-dynamics simulation of a glassy polymer melt Rouse model and cage effect. Comput. Theor. Polym. Sci. 1999, 9, 217−226 doi: 10.1016/S1089-3156(99)00008-2
-
[53]
Binder, K. and Kob, W. " Glassy materials and disordered solids: An introduction to their statistical mechanics”, World Scientific, 2005.
-
[54]
Toninelli, C.; Wyart, M.; Berthier, L.; Biroli, G.; Bouchaud, J. P. Dynamical susceptibility of glass formers: Contrasting the predictions of theoretical scenarios. Phys. Rev. E 2005, 71, 041505 doi: 10.1103/PhysRevE.71.041505
-
[55]
Berthier, L.; Biroli, G.; Bouchaud, J. P.; Kob, W.; Miyazaki, K.; Reichman, D. R. Spontaneous and induced dynamic fluctuations in glass formers. I. General results and dependence on ensemble and dynamics. J. Chem. Phys. 2007, 126, 184503
-
[56]
Fox, T. G.; Flory, P. J. The glass temperature and related properties of polystyrene - influence of molecular weight. J. Polym. Sci. 1954, 14, 315−319 doi: 10.1002/pol.1954.120147514
-
[57]
Doolittle, A. K. Studies in Newtonian Flow. II. The dependence of the biscosity of liquids on free-space. J. Appl. Phys. 1951, 22, 1471−1475
-
[58]
Furukawa, A. Simple picture of supercooled liquid dynamics: Dynamic scaling and phenomenology based on clusters. Phys. Rev. E 2013, 87, 062321
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1423
- HTML全文浏览量: 65

下载: