Citation: Ping-Ping Wu, Jun-Chao Liu, Zheng Xie, Jin-Shan Guo, Jing-Xia Wang. Fluorescence Retention of Organosilane-polymerized Carbon Dots Inverse Opals in CuCl Suspension[J]. Chinese Journal of Polymer Science, ;2018, 36(5): 555-562. doi: 10.1007/s10118-018-2126-7 shu

Fluorescence Retention of Organosilane-polymerized Carbon Dots Inverse Opals in CuCl Suspension

  • Corresponding author: Jin-Shan Guo, gjs@lzu.edu.cn Jing-Xia Wang, jingxiawang@mail.ipc.ac.cn
  • These authors contributed equally to this work
  • Received Date: 6 January 2018
    Accepted Date: 7 February 2018
    Available Online: 5 March 2018

  • A novel and fluorescence retention inverse opal has been achieved from organosilane-polymerized carbon dots (SiCDs), which is prepared via infiltrating SiCD solution into the interstice of photonic crystal (PC) template, low temperature treatment, heating polymerization and removing the colloidal template. The as-prepared SiCD inverse opals demonstrate close-cell structure, which is completely different from conventional open-cell structure. Then the fluorescence signal of as-prepared sample keeps almost unchanged in CuCl suspension while the fluorescence of SiCD solution can be quenched by CuCl suspension through an effective electron transfer process. This phenomenon can be attributed to the combined effect of high hydrostatic pressure in the pore structure, stable crosslinking network and fluorescence enhancement by PC structure. The SiCD inverse opals have advantages of unique close-cell structure, easy preparation and good repeatability that give an important insight into the design and manufacture of novel and advanced optical devices.
  • 加载中
    1. [1]

      Lu S. Y., Sui L. Z., Liu J. J., Zhu S. J., Chen A. M., Jin M. X., Yang B.. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence[J]. Adv. Mater., 2017,291603443. doi: 10.1002/adma.201603443

    2. [2]

      Wang L., Wang Y. L., Xu T., Liao H. B., Yao C. B., Liu Y., Li Z., Chen Z. W., Pan D. Y., Sun L. T., Wu M. H.. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties[J]. Nat. Commun., 2014,55357. doi: 10.1038/ncomms6357

    3. [3]

      Mahesh S., Lekshmi C. L., Renuka K. D., Joseph K.. Simple and cost-effective synthesis of fluorescent graphene quantum dots from honey:application as stable security ink and white-light emission[J]. Part. Part. Syst. Charact., 2016,33:70-74. doi: 10.1002/ppsc.v33.2

    4. [4]

      Zhang F., Feng X. T., Zhang Y., Yan L. P., Yang Y. Z., Liu X. J.. Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs[J]. Nanoscale, 2016,8:8618-8612. doi: 10.1039/C5NR08838K

    5. [5]

      Zhu L. L., Yin Y. J., Wang C. F., Chen S.. Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding[J]. J. Mater. Chem. C, 2013,1:4925-4932.  

    6. [6]

      Liu S. S., Wang C. F., Li C. X., Wang J., Mao L. H., Chen S.. Hair-derived carbon dots toward versatile multidimensional fluorescent materials[J]. J. Mater. Chem. C, 2014,2:6477-6483. doi: 10.1039/C4TC00636D

    7. [7]

      Liu S., Tian J. Q., Wang L., Zhang Y. W., Qin X. Y., Luo Y. L., Asiri A. M., Al-Youbi A. O., Sun X. P.. Hydrothermal treatment of grass:a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(Ⅱ) ions[J]. Adv. Mater., 2012,24:2037-2041. doi: 10.1002/adma.201200164

    8. [8]

      Xu Y., Chen X., Chai R., Xing C. F., Li H. R., Yin X. B.. A magnetic/fluorometric bimodal sensor based on a carbon dots-MnO2 platform for glutathione detection[J]. Nanoscale, 2016,8:13414-13421. doi: 10.1039/C6NR03129C

    9. [9]

      Miao X., Qu D., Yang D. X., Nie B., Zhao Y. K., Fan H. Y., Sun Z. C.. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization[J]. Adv. Mater., 2018,301704740. doi: 10.1002/adma.201704740

    10. [10]

      Liu J. J., Lu S. Y., Tang Q. L., Zhang K., Yu W. X., Sun H. C., Yang B.. One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against porphyromonas gingivalis[J]. Nanoscale, 2017,9:7135-7142. doi: 10.1039/C7NR02128C

    11. [11]

      Lu S. Y., Xiao G. J., Sui L. Z., Feng T. L., Yong X., Zhu S. J., Li B. J., Liu Z. Y., Zou B., Jin M. X., Tse J. S., Yan H., Yang B.. Piezochromic carbon dots with two-photon fluorescence[J]. Angew. Chem. Int. Ed., 2017,129:6283-6287. doi: 10.1002/ange.v129.22

    12. [12]

      Liu X. J., Liu L. T., Hu X. J., Zhou S. Y., Ankri R., Fixler D., Xie Z.. Multimodal bioimaging based on gold nanorod and carbon dot nanohybrids as a novel tool for atherosclerosis detection[J]. Nano Res., 2017. doi: 10.1007/s12274-017-1739-4

    13. [13]

      Xie Z., Wang F., Liu C. Y.. Organic-inorganic hybrid functional carbon dot gel glasses[J]. Adv. Mater., 2012,24:1716-1721. doi: 10.1002/adma.201104962

    14. [14]

      Huang J. J., Zhong Z. F., Rong M. Z., Zhou X., Chen X. D., Zhang M. Q.. An easy approach of preparing strongly luminescent carbon dots and their polymer based composites for enhancing solar cell efficiency[J]. Carbon, 2014,70:190-198. doi: 10.1016/j.carbon.2013.12.092

    15. [15]

      Lu W. B., Qin X. Y., Liu S., Chang G. H., Zhang Y. W., Luo Y. L., Asiri A. M., Al-Youbi A. O., Sun X. P.. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of Mercury(Ⅱ) ions[J]. Anal. Chem, 2012,84(12):5351-5357. doi: 10.1021/ac3007939

    16. [16]

      Zheng M., Xie Z. G., Qu D., Li D., Du P., Jing X. P., Sun Z. C.. On-off-on fluorescent carbon dot nanosensor for recognition of Chromium(Ⅵ) and ascorbic acid based on the inner filter effect[J]. ACS Appl. Mater. Interfaces, 2013,5:1078-1083. doi: 10.1021/am302862k

    17. [17]

      Dong Y. Q., Wang R. X., Li G. L., Chen C. Q., Chi Y. W., Chen G. N.. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions[J]. Anal. Chem., 2012,84:6620-6624.  

    18. [18]

      Lu W. J., Gong X. J., Nan M., Liu Y., Shuang S. M., Dong C.. Comparative study for N and S doped carbon dots:synthesis, characterization and applications for Fe3+ probe and cellular imaging[J]. Anal. Chim. Acta, 2015,898:116-127. doi: 10.1016/j.aca.2015.09.050

    19. [19]

      Luo W., Yan J. D., Tan Y. L., Ma H. R., Guan J. G.. Rotating 1-D magnetic photonic crystal balls with a tunable lattice constant[J]. Nanoscale, 2017,9:9548-9555. doi: 10.1039/C7NR03335D

    20. [20]

      Wu Y. N., Li F. T., Zhu W., Cui J. C., Tao C. A., Lin C. X., Hannam P. M., Li G. T.. Metal-organic frameworks with a three-dimensional ordered macroporous structure:dynamic photonic materials[J]. Angew. Chem. Int. Ed., 2011,50:12518-12522. doi: 10.1002/anie.201104597

    21. [21]

      Liu J. C., Wan L., Zhang M. B., Jiang K. J., Song K., Wang J. X., Ikeda T., Jiang L.. Electrowetting-induced morphological evolution of metal-organic inverse opals toward a water-lithography approach[J]. Adv. Funct. Mater., 2017,271605221. doi: 10.1002/adfm.v27.7

    22. [22]

      Chen K., Fu Q. Q., Ye S. Y., Ge J. P.. Multicolor printing using electric-field-responsive and photocurable photonic crystals[J]. Adv. Funct. Mater., 2017,271702825. doi: 10.1002/adfm.v27.43

    23. [23]

      Pang F., Jiang Y. T., Zhang Y. Q., He M. Y., Ge J. P.. Synergetic enhancement of photocatalytic activity with a photonic crystal film as a catalyst support[J]. J. Mater. Chem. A, 2015,3:21439-21443. doi: 10.1039/C5TA05224F

    24. [24]

      Waterhouse G. I. N., Wahab A. K., Al-Oufi M., Jovic V., Anjum D. H., Sun-Waterhouse D., Liorca J., Idriss H.. Hydrogen production by tuning the photonic band gap with the electronic band gap of TiO2[J]. Sci. Rep., 2013,32849. doi: 10.1038/srep02849

    25. [25]

      Rahul T. K., Sandhyarani N.. Nitrogen-fluorine co-doped titania inverse opals for enhanced solar light driven photocatalysis[J]. Nanoscale, 2015,7:18259-18270. doi: 10.1039/C5NR04663G

    26. [26]

      Wang H., Gu H. C., Chen Z. Y., Shang L. R., Zhao Z., Gu Z. Z., Zhao Y. J.. Enzymatic inverse opal hydrogel particles for biocatalyst[J]. ACS Appl. Mater. Interfaces, 2017,9(15):12914-12918. doi: 10.1021/acsami.7b01866

    27. [27]

      Gao N., Tian T., Cui J. C., Zhang W. L., Yin X. P., Wang S. Q., Ji J. W., Li G. T.. Efficient construction of well-defined multicompartment porous systems in a modular and chemically orthogonal fashion[J]. Angew. Chem. Int. Ed., 2017,56:3880-3885. doi: 10.1002/anie.201612280

    28. [28]

      Zhao Z., Wang H., Shang L. R., Yu Y. R., Fu F. F., Zhao Y. J., Gu Z. Z.. Bioinspired heterogeneous structural color stripes from capillaries[J]. Adv. Mater., 2017,291704569. doi: 10.1002/adma.v29.46

    29. [29]

      Liu J. C., Xie Z., Shang Y. Y., Ren J. K., Hu R. X., Guan B., Wang J. X., Ikeda T., Jiang L.. Lyophilic but nonwettable organosilane-polymerized carbon dots inverse opals with close-cell structure[J]. ACS Appl. Mater. Interfaces, 2018,10:6701-6710. doi: 10.1021/acsami.7b17936

    30. [30]

      Fu F. F., Chen Z. Y., Zhao Z., Wang H., Shang L. R., Gu Z. Z., Zhao Y. J.. Bio-inspired self-healing structural color hydrogel[J]. Proc. Natl. Acad. Sci., 2017,114:5900-5905. doi: 10.1073/pnas.1703616114

    31. [31]

      Guo D., Li C., Wang Y., Li Y. N., Song Y. L.. Precise assembly of particles for zigzag or linear patterns[J]. Angew. Chem. Int. Ed., 2017,129:15550-15554. doi: 10.1002/ange.201709115

    32. [32]

      Hou J., Li M. Z., Song Y. L.. Patterned colloidal photonic crystals[J]. Angew. Chem. Int. Ed., 2018,57(10):2544-2553. doi: 10.1002/anie.v57.10

    33. [33]

      Xing H. H., Li J., Shi Y., Guo J. B., Wei J.. Thermally driven photonic actuator based on silica opal photonic crystal with liquid crystal elastomer[J]. ACS Appl. Mater. Interfaces, 2016,8(14):9440-9445. doi: 10.1021/acsami.6b01033

    34. [34]

      Wei W. Y., Shi A. S., Wu T. H., Wei J., Guo J. B.. Thermo-responsive shape and optical memories of photonic composite films enabled by glassy liquid crystalline polymer networks[J]. Soft Matter, 2016,12:8534-8541. doi: 10.1039/C6SM01887D

    35. [35]

      Zhou J. M., Yang J., Gu Z. D., Zhang G. F., Wei Y., Yao X., Song Y. L., Jiang L.. Controllable fabrication of noniridescent microshaped photonic crystal assemblies by dynamic three-phase contact line behaviors on superhydrophobic substrates[J]. ACS Appl. Mater. Interfaces, 2015,7(40):22644-22651. doi: 10.1021/acsami.5b07443

    36. [36]

      Zhou J. M., Han P., Liu M. J., Zhou H. Y., Zhang Y. X., Jiang J. K., Liu P., Wei Y., Song Y. L., Yao X.. Self-healable organogel nanocomposite with angle-independent structural colors[J]. Angew. Chem. Int. Ed., 2017,129:10598-10602. doi: 10.1002/ange.v129.35

    37. [37]

      Liu J. C., Shang Y. Y., Zhang D. J., Xie Z., Hu R. X., Wang J. X.. Single-material solvent-sensitive fluorescent actuator from carbon dots inverse opals based on gradient dewetting[J]. Chinese J. Polym. Sci., 2017,35(9):1043-1050. doi: 10.1007/s10118-017-1981-y

    38. [38]

      Yablonovitch E.. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett., 1987,58:2059-2062. doi: 10.1103/PhysRevLett.58.2059

    39. [39]

      John S.. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys. Rev. Lett., 1987,58:2486-2489. doi: 10.1103/PhysRevLett.58.2486

    40. [40]

      Sun Y., Zhang Z. X., Xie A. J., Xiao C. H., Li S. K., Huang F. Z., Shen Y. H.. An ordered and porous N-doped carbon dot-sensitized Bi2O3 inverse opal with enhanced photoelectrochemical performance and photocatalytic activity[J]. Nanoscale, 2015,7:13974-13980. doi: 10.1039/C5NR03402G

    41. [41]

      Cheng J., Wang C. F., Zhang Y., Yang S. Y., Chen S.. Zinc ion-doped carbon dots with strong yellow photoluminescence[J]. RSC Adv., 2016,6:37189-37194. doi: 10.1039/C5RA27808B

    42. [42]

      Fan Y. O., Cheng H. H., Zhou C., Xie X. J., Liu Y., Dai L. M., Zhang J., Qu L. T.. Honeycomb architecture of carbon quantum dots:a new efficient substrate to support gold for stronger SERS[J]. Nanoscale, 2012,4:1776-1781. doi: 10.1039/c2nr12015a

    43. [43]

      Eftekhari E., Wang W. T., Li X., Nikhil A., Wu Z. Q., Klein R., Cole I. S., Li Q.. Picomolar reversible Hg(Ⅱ) solid-state sensor based on carbon dots in double heterostructure colloidal photonic crystals[J]. Sensor Actuat. B-Chem., 2017,240:204-211. doi: 10.1016/j.snb.2016.08.154

    44. [44]

      Zhang W. J., Zhang X. Z., Zhang Z. X., Wang W. H., Xie A. J., Xiao C. H., Zhang H., Shen Y. H.. A nitrogen-doped carbon dot-sensitized TiO2 inverse opal film:preparation, enhanced photoelectrochemical and photocatalytic performance[J]. J. Electrochem. Soc., 2015,162:H638-H644. doi: 10.1149/2.0651509jes

    45. [45]

      Wang F., Xie Z., Zhang H., Liu C. Y., Zhang Y. G.. Highly luminescent organosilane-functionalized carbon dots[J]. Adv. Funct. Mater., 2011,21:1027-1031. doi: 10.1002/adfm.201002279

    46. [46]

      Liu R. H., Li H. T., Kong W. Q., Liu J., Liu Y., Tong C. Y., Zhang X., Kang Z. H.. Ultra-sensitive and selective Hg2+ detection based on fluorescent carbon dots[J]. Mater. Res. Bull., 2013,48:2529-2534. doi: 10.1016/j.materresbull.2013.03.015

    47. [47]

      Xia Y. S., Zhu C. Q.. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (Ⅱ)[J]. Talanta., 2008,75:215-221.  

    48. [48]

      Blanford C. F., Schroden R. C., Al-Daous M., Stein A.. Tuning solvent-dependent color changes of three-dimensionally ordered macroporous (3DOM) materials through compositional and geometric modifications[J]. Adv. Mater., 2001,13:26-29. doi: 10.1002/(ISSN)1521-4095

    49. [49]

      Li H. L., Wang J. X., Yang L. M., Song Y. L.. Superoleophilic and superhydrophobic inverse opals for oil sensors[J]. Adv. Funct. Mater., 2008,18:3258-3264. doi: 10.1002/adfm.v18:20

    50. [50]

      Tian D. L., Chen Q. W., Nie F. Q., Xu J. I., Song Y. L., Jiang L.. Patterned wettability transition by photoelectric cooperative and anisotropic wetting for liquid reprography[J]. Adv. Mater., 2009,21:3744-3749. doi: 10.1002/adma.v21:37

    51. [51]

      Heng L. P., Li J., Li M. C., Tian D. L., Fan L. Z., Jiang L., Tang B. Z.. Ordered honeycomb structure surface generated by breath figures for liquid reprography[J]. Adv. Funct. Mater., 2014,24:7241-7248. doi: 10.1002/adfm.v24.46

    52. [52]

      Li H., Wang J. X., Pan Z. L., Cui L. Y., Xu L., Wang R. M., Song Y. L., Jiang L.. Amplifying fluorescence sensing based on inverse opal photonic crystal toward trace TNT detection[J]. J. Mater. Chem., 2011,21:1730-1735. doi: 10.1039/C0JM02554B

    53. [53]

      Chen J. I. L., Freymann G. V., Choi S. Y., Kitaev V., Ozin G. A.. Amplified photochemistry with slow photons[J]. Adv. Mater., 2006,18:1915-1919. doi: 10.1002/(ISSN)1521-4095

    54. [54]

      Liu J. C., Ren J. K., Xie Z., Guan B., Wang J. X., Ikeda T., Jiang L.. Multi-functional organosilane-polymerized carbon dots inverse opals[J]. Nanoscale, 2018. doi: 10.1039/C7NR09387J

  • 加载中
    1. [1]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    2. [2]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    3. [3]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    4. [4]

      Yupeng LiuHui WangSongnan Qu . Review on near-infrared absorbing/emissive carbon dots: From preparation to multi-functional application. Chinese Chemical Letters, 2025, 36(5): 110618-. doi: 10.1016/j.cclet.2024.110618

    5. [5]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    6. [6]

      Chenghao LiuXiaofeng LinJing LiaoMin YangMin JiangYue HuangZhizhi DuLina ChenSanjun FanQitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598

    7. [7]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    8. [8]

      Yuan LiuBoyang WangYaxin LiWeidong LiSiyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426

    9. [9]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    10. [10]

      Rui ChengTingting ZhangXin HuangJian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763

    11. [11]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    12. [12]

      Qiang LiJiangbo FanHongkai MuLin ChenYongzhen YangShiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947

    13. [13]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    14. [14]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    15. [15]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    16. [16]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    17. [17]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    18. [18]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    19. [19]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    20. [20]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

Metrics
  • PDF Downloads(0)
  • Abstract views(940)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return