Fluorescence Retention of Organosilane-polymerized Carbon Dots Inverse Opals in CuCl Suspension
- Corresponding author: Jin-Shan Guo, gjs@lzu.edu.cn Jing-Xia Wang, jingxiawang@mail.ipc.ac.cn †These authors contributed equally to this work
Citation:
Ping-Ping Wu, Jun-Chao Liu, Zheng Xie, Jin-Shan Guo, Jing-Xia Wang. Fluorescence Retention of Organosilane-polymerized Carbon Dots Inverse Opals in CuCl Suspension[J]. Chinese Journal of Polymer Science,
;2018, 36(5): 555-562.
doi:
10.1007/s10118-018-2126-7
Lu S. Y., Sui L. Z., Liu J. J., Zhu S. J., Chen A. M., Jin M. X., Yang B.. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence[J]. Adv. Mater., 2017,291603443. doi: 10.1002/adma.201603443
Wang L., Wang Y. L., Xu T., Liao H. B., Yao C. B., Liu Y., Li Z., Chen Z. W., Pan D. Y., Sun L. T., Wu M. H.. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties[J]. Nat. Commun., 2014,55357. doi: 10.1038/ncomms6357
Mahesh S., Lekshmi C. L., Renuka K. D., Joseph K.. Simple and cost-effective synthesis of fluorescent graphene quantum dots from honey:application as stable security ink and white-light emission[J]. Part. Part. Syst. Charact., 2016,33:70-74. doi: 10.1002/ppsc.v33.2
Zhang F., Feng X. T., Zhang Y., Yan L. P., Yang Y. Z., Liu X. J.. Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs[J]. Nanoscale, 2016,8:8618-8612. doi: 10.1039/C5NR08838K
Zhu L. L., Yin Y. J., Wang C. F., Chen S.. Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding[J]. J. Mater. Chem. C, 2013,1:4925-4932.
Liu S. S., Wang C. F., Li C. X., Wang J., Mao L. H., Chen S.. Hair-derived carbon dots toward versatile multidimensional fluorescent materials[J]. J. Mater. Chem. C, 2014,2:6477-6483. doi: 10.1039/C4TC00636D
Liu S., Tian J. Q., Wang L., Zhang Y. W., Qin X. Y., Luo Y. L., Asiri A. M., Al-Youbi A. O., Sun X. P.. Hydrothermal treatment of grass:a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(Ⅱ) ions[J]. Adv. Mater., 2012,24:2037-2041. doi: 10.1002/adma.201200164
Xu Y., Chen X., Chai R., Xing C. F., Li H. R., Yin X. B.. A magnetic/fluorometric bimodal sensor based on a carbon dots-MnO2 platform for glutathione detection[J]. Nanoscale, 2016,8:13414-13421. doi: 10.1039/C6NR03129C
Miao X., Qu D., Yang D. X., Nie B., Zhao Y. K., Fan H. Y., Sun Z. C.. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization[J]. Adv. Mater., 2018,301704740. doi: 10.1002/adma.201704740
Liu J. J., Lu S. Y., Tang Q. L., Zhang K., Yu W. X., Sun H. C., Yang B.. One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against porphyromonas gingivalis[J]. Nanoscale, 2017,9:7135-7142. doi: 10.1039/C7NR02128C
Lu S. Y., Xiao G. J., Sui L. Z., Feng T. L., Yong X., Zhu S. J., Li B. J., Liu Z. Y., Zou B., Jin M. X., Tse J. S., Yan H., Yang B.. Piezochromic carbon dots with two-photon fluorescence[J]. Angew. Chem. Int. Ed., 2017,129:6283-6287. doi: 10.1002/ange.v129.22
Liu X. J., Liu L. T., Hu X. J., Zhou S. Y., Ankri R., Fixler D., Xie Z.. Multimodal bioimaging based on gold nanorod and carbon dot nanohybrids as a novel tool for atherosclerosis detection[J]. Nano Res., 2017. doi: 10.1007/s12274-017-1739-4
Xie Z., Wang F., Liu C. Y.. Organic-inorganic hybrid functional carbon dot gel glasses[J]. Adv. Mater., 2012,24:1716-1721. doi: 10.1002/adma.201104962
Huang J. J., Zhong Z. F., Rong M. Z., Zhou X., Chen X. D., Zhang M. Q.. An easy approach of preparing strongly luminescent carbon dots and their polymer based composites for enhancing solar cell efficiency[J]. Carbon, 2014,70:190-198. doi: 10.1016/j.carbon.2013.12.092
Lu W. B., Qin X. Y., Liu S., Chang G. H., Zhang Y. W., Luo Y. L., Asiri A. M., Al-Youbi A. O., Sun X. P.. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of Mercury(Ⅱ) ions[J]. Anal. Chem, 2012,84(12):5351-5357. doi: 10.1021/ac3007939
Zheng M., Xie Z. G., Qu D., Li D., Du P., Jing X. P., Sun Z. C.. On-off-on fluorescent carbon dot nanosensor for recognition of Chromium(Ⅵ) and ascorbic acid based on the inner filter effect[J]. ACS Appl. Mater. Interfaces, 2013,5:1078-1083. doi: 10.1021/am302862k
Dong Y. Q., Wang R. X., Li G. L., Chen C. Q., Chi Y. W., Chen G. N.. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions[J]. Anal. Chem., 2012,84:6620-6624.
Lu W. J., Gong X. J., Nan M., Liu Y., Shuang S. M., Dong C.. Comparative study for N and S doped carbon dots:synthesis, characterization and applications for Fe3+ probe and cellular imaging[J]. Anal. Chim. Acta, 2015,898:116-127. doi: 10.1016/j.aca.2015.09.050
Luo W., Yan J. D., Tan Y. L., Ma H. R., Guan J. G.. Rotating 1-D magnetic photonic crystal balls with a tunable lattice constant[J]. Nanoscale, 2017,9:9548-9555. doi: 10.1039/C7NR03335D
Wu Y. N., Li F. T., Zhu W., Cui J. C., Tao C. A., Lin C. X., Hannam P. M., Li G. T.. Metal-organic frameworks with a three-dimensional ordered macroporous structure:dynamic photonic materials[J]. Angew. Chem. Int. Ed., 2011,50:12518-12522. doi: 10.1002/anie.201104597
Liu J. C., Wan L., Zhang M. B., Jiang K. J., Song K., Wang J. X., Ikeda T., Jiang L.. Electrowetting-induced morphological evolution of metal-organic inverse opals toward a water-lithography approach[J]. Adv. Funct. Mater., 2017,271605221. doi: 10.1002/adfm.v27.7
Chen K., Fu Q. Q., Ye S. Y., Ge J. P.. Multicolor printing using electric-field-responsive and photocurable photonic crystals[J]. Adv. Funct. Mater., 2017,271702825. doi: 10.1002/adfm.v27.43
Pang F., Jiang Y. T., Zhang Y. Q., He M. Y., Ge J. P.. Synergetic enhancement of photocatalytic activity with a photonic crystal film as a catalyst support[J]. J. Mater. Chem. A, 2015,3:21439-21443. doi: 10.1039/C5TA05224F
Waterhouse G. I. N., Wahab A. K., Al-Oufi M., Jovic V., Anjum D. H., Sun-Waterhouse D., Liorca J., Idriss H.. Hydrogen production by tuning the photonic band gap with the electronic band gap of TiO2[J]. Sci. Rep., 2013,32849. doi: 10.1038/srep02849
Rahul T. K., Sandhyarani N.. Nitrogen-fluorine co-doped titania inverse opals for enhanced solar light driven photocatalysis[J]. Nanoscale, 2015,7:18259-18270. doi: 10.1039/C5NR04663G
Wang H., Gu H. C., Chen Z. Y., Shang L. R., Zhao Z., Gu Z. Z., Zhao Y. J.. Enzymatic inverse opal hydrogel particles for biocatalyst[J]. ACS Appl. Mater. Interfaces, 2017,9(15):12914-12918. doi: 10.1021/acsami.7b01866
Gao N., Tian T., Cui J. C., Zhang W. L., Yin X. P., Wang S. Q., Ji J. W., Li G. T.. Efficient construction of well-defined multicompartment porous systems in a modular and chemically orthogonal fashion[J]. Angew. Chem. Int. Ed., 2017,56:3880-3885. doi: 10.1002/anie.201612280
Zhao Z., Wang H., Shang L. R., Yu Y. R., Fu F. F., Zhao Y. J., Gu Z. Z.. Bioinspired heterogeneous structural color stripes from capillaries[J]. Adv. Mater., 2017,291704569. doi: 10.1002/adma.v29.46
Liu J. C., Xie Z., Shang Y. Y., Ren J. K., Hu R. X., Guan B., Wang J. X., Ikeda T., Jiang L.. Lyophilic but nonwettable organosilane-polymerized carbon dots inverse opals with close-cell structure[J]. ACS Appl. Mater. Interfaces, 2018,10:6701-6710. doi: 10.1021/acsami.7b17936
Fu F. F., Chen Z. Y., Zhao Z., Wang H., Shang L. R., Gu Z. Z., Zhao Y. J.. Bio-inspired self-healing structural color hydrogel[J]. Proc. Natl. Acad. Sci., 2017,114:5900-5905. doi: 10.1073/pnas.1703616114
Guo D., Li C., Wang Y., Li Y. N., Song Y. L.. Precise assembly of particles for zigzag or linear patterns[J]. Angew. Chem. Int. Ed., 2017,129:15550-15554. doi: 10.1002/ange.201709115
Hou J., Li M. Z., Song Y. L.. Patterned colloidal photonic crystals[J]. Angew. Chem. Int. Ed., 2018,57(10):2544-2553. doi: 10.1002/anie.v57.10
Xing H. H., Li J., Shi Y., Guo J. B., Wei J.. Thermally driven photonic actuator based on silica opal photonic crystal with liquid crystal elastomer[J]. ACS Appl. Mater. Interfaces, 2016,8(14):9440-9445. doi: 10.1021/acsami.6b01033
Wei W. Y., Shi A. S., Wu T. H., Wei J., Guo J. B.. Thermo-responsive shape and optical memories of photonic composite films enabled by glassy liquid crystalline polymer networks[J]. Soft Matter, 2016,12:8534-8541. doi: 10.1039/C6SM01887D
Zhou J. M., Yang J., Gu Z. D., Zhang G. F., Wei Y., Yao X., Song Y. L., Jiang L.. Controllable fabrication of noniridescent microshaped photonic crystal assemblies by dynamic three-phase contact line behaviors on superhydrophobic substrates[J]. ACS Appl. Mater. Interfaces, 2015,7(40):22644-22651. doi: 10.1021/acsami.5b07443
Zhou J. M., Han P., Liu M. J., Zhou H. Y., Zhang Y. X., Jiang J. K., Liu P., Wei Y., Song Y. L., Yao X.. Self-healable organogel nanocomposite with angle-independent structural colors[J]. Angew. Chem. Int. Ed., 2017,129:10598-10602. doi: 10.1002/ange.v129.35
Liu J. C., Shang Y. Y., Zhang D. J., Xie Z., Hu R. X., Wang J. X.. Single-material solvent-sensitive fluorescent actuator from carbon dots inverse opals based on gradient dewetting[J]. Chinese J. Polym. Sci., 2017,35(9):1043-1050. doi: 10.1007/s10118-017-1981-y
Yablonovitch E.. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett., 1987,58:2059-2062. doi: 10.1103/PhysRevLett.58.2059
John S.. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys. Rev. Lett., 1987,58:2486-2489. doi: 10.1103/PhysRevLett.58.2486
Sun Y., Zhang Z. X., Xie A. J., Xiao C. H., Li S. K., Huang F. Z., Shen Y. H.. An ordered and porous N-doped carbon dot-sensitized Bi2O3 inverse opal with enhanced photoelectrochemical performance and photocatalytic activity[J]. Nanoscale, 2015,7:13974-13980. doi: 10.1039/C5NR03402G
Cheng J., Wang C. F., Zhang Y., Yang S. Y., Chen S.. Zinc ion-doped carbon dots with strong yellow photoluminescence[J]. RSC Adv., 2016,6:37189-37194. doi: 10.1039/C5RA27808B
Fan Y. O., Cheng H. H., Zhou C., Xie X. J., Liu Y., Dai L. M., Zhang J., Qu L. T.. Honeycomb architecture of carbon quantum dots:a new efficient substrate to support gold for stronger SERS[J]. Nanoscale, 2012,4:1776-1781. doi: 10.1039/c2nr12015a
Eftekhari E., Wang W. T., Li X., Nikhil A., Wu Z. Q., Klein R., Cole I. S., Li Q.. Picomolar reversible Hg(Ⅱ) solid-state sensor based on carbon dots in double heterostructure colloidal photonic crystals[J]. Sensor Actuat. B-Chem., 2017,240:204-211. doi: 10.1016/j.snb.2016.08.154
Zhang W. J., Zhang X. Z., Zhang Z. X., Wang W. H., Xie A. J., Xiao C. H., Zhang H., Shen Y. H.. A nitrogen-doped carbon dot-sensitized TiO2 inverse opal film:preparation, enhanced photoelectrochemical and photocatalytic performance[J]. J. Electrochem. Soc., 2015,162:H638-H644. doi: 10.1149/2.0651509jes
Wang F., Xie Z., Zhang H., Liu C. Y., Zhang Y. G.. Highly luminescent organosilane-functionalized carbon dots[J]. Adv. Funct. Mater., 2011,21:1027-1031. doi: 10.1002/adfm.201002279
Liu R. H., Li H. T., Kong W. Q., Liu J., Liu Y., Tong C. Y., Zhang X., Kang Z. H.. Ultra-sensitive and selective Hg2+ detection based on fluorescent carbon dots[J]. Mater. Res. Bull., 2013,48:2529-2534. doi: 10.1016/j.materresbull.2013.03.015
Xia Y. S., Zhu C. Q.. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (Ⅱ)[J]. Talanta., 2008,75:215-221.
Blanford C. F., Schroden R. C., Al-Daous M., Stein A.. Tuning solvent-dependent color changes of three-dimensionally ordered macroporous (3DOM) materials through compositional and geometric modifications[J]. Adv. Mater., 2001,13:26-29. doi: 10.1002/(ISSN)1521-4095
Li H. L., Wang J. X., Yang L. M., Song Y. L.. Superoleophilic and superhydrophobic inverse opals for oil sensors[J]. Adv. Funct. Mater., 2008,18:3258-3264. doi: 10.1002/adfm.v18:20
Tian D. L., Chen Q. W., Nie F. Q., Xu J. I., Song Y. L., Jiang L.. Patterned wettability transition by photoelectric cooperative and anisotropic wetting for liquid reprography[J]. Adv. Mater., 2009,21:3744-3749. doi: 10.1002/adma.v21:37
Heng L. P., Li J., Li M. C., Tian D. L., Fan L. Z., Jiang L., Tang B. Z.. Ordered honeycomb structure surface generated by breath figures for liquid reprography[J]. Adv. Funct. Mater., 2014,24:7241-7248. doi: 10.1002/adfm.v24.46
Li H., Wang J. X., Pan Z. L., Cui L. Y., Xu L., Wang R. M., Song Y. L., Jiang L.. Amplifying fluorescence sensing based on inverse opal photonic crystal toward trace TNT detection[J]. J. Mater. Chem., 2011,21:1730-1735. doi: 10.1039/C0JM02554B
Chen J. I. L., Freymann G. V., Choi S. Y., Kitaev V., Ozin G. A.. Amplified photochemistry with slow photons[J]. Adv. Mater., 2006,18:1915-1919. doi: 10.1002/(ISSN)1521-4095
Liu J. C., Ren J. K., Xie Z., Guan B., Wang J. X., Ikeda T., Jiang L.. Multi-functional organosilane-polymerized carbon dots inverse opals[J]. Nanoscale, 2018. doi: 10.1039/C7NR09387J
Meiling Xu , Xinyang Li , Pengyuan Liu , Junjun Liu , Xiao Han , Guodong Chai , Shuangling Zhong , Bai Yang , Liying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Rui Cheng , Xin Huang , Tingting Zhang , Jiazhuang Guo , Jian Yu , Su Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278
Yupeng Liu , Hui Wang , Songnan Qu . Review on near-infrared absorbing/emissive carbon dots: From preparation to multi-functional application. Chinese Chemical Letters, 2025, 36(5): 110618-. doi: 10.1016/j.cclet.2024.110618
Qiang Fu , Shouhong Sun , Kangzhi Lu , Ning Li , Zhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136
Chenghao Liu , Xiaofeng Lin , Jing Liao , Min Yang , Min Jiang , Yue Huang , Zhizhi Du , Lina Chen , Sanjun Fan , Qitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598
Quan Zhang , Shunjie Xing , Jingqian Han , Li Feng , Jianchun Li , Zhaosheng Qian , Jin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117
Yuan Liu , Boyang Wang , Yaxin Li , Weidong Li , Siyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426
Jianye Kang , Xinyu Yang , Xuhao Yang , Jiahui Sun , Yuhang Liu , Shutao Wang , Wenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297
Rui Cheng , Tingting Zhang , Xin Huang , Jian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763
Wu-Jian Long , Yang Yu , Chuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943
Qiang Li , Jiangbo Fan , Hongkai Mu , Lin Chen , Yongzhen Yang , Shiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
Hao Cai , Xiaoyan Wu , Lei Jiang , Feng Yu , Yuxiang Yang , Yan Li , Xian Zhang , Jian Liu , Zijian Li , Hong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946
Liwen Wang , Boyang Wang , Siyu Lu , Shubo Lv , Xiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Binyang Qin , Mengqi Wang , Shimei Wu , Yining Li , Chilin Liu , Yufei Zhang , Haosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Shuangying Li , Qingxiang Zhou , Zhi Li , Menghua Liu , Yanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064