Liquid-crystal Assembly of Semiflexible-coil/Homopolymer Blends: a Dissipative Particle Dynamics Study

Yan-Yan Wang Qing-Liang Song Lin-Li He

Citation:  Yan-Yan Wang, Qing-Liang Song, Lin-Li He. Liquid-crystal Assembly of Semiflexible-coil/Homopolymer Blends: a Dissipative Particle Dynamics Study[J]. Chinese Journal of Polymer Science, 2018, 36(10): 1200-1206. doi: 10.1007/s10118-018-2122-y shu

Liquid-crystal Assembly of Semiflexible-coil/Homopolymer Blends: a Dissipative Particle Dynamics Study

English


    1. [1]

      de Cuendias, A.; Hiorns, R. C.; Cloutet, E.; Vignau, L.; Cramail, H. Conjugated rod-coil block copolymers and optoelectronic applications. Polym. Int. 2010, 59, 1452−1476 doi: 10.1002/pi.v59:11

    2. [2]

      Sary, N.; Richard, F.; Brochon, C.; Leclerc, N.; Leveque, P.; Audinot, J. N.; Berson, S.; Heiser, T.; Hadziioannou, G.; Mezzenga, R. A new supramolecular route for using rod-coil block copolymers in photovoltaic applications. Adv. Mater. 2010, 22, 763−768 doi: 10.1002/adma.v22:6

    3. [3]

      Nie, Z. H.; Kumacheva, E. Patterning surfaces with functional polymers. Nat. Mater. 2008, 7, 277−290 doi: 10.1038/nmat2109

    4. [4]

      Bates, F. S.; Fredrickson, G. H. Block copolymers-designer soft materials. Phys. Today 1999, 52, 32−38

    5. [5]

      Friedel, P.; John, A.; Pospiech, D.; Jehnichen, D.; Netz, R. R. Influence of the polydispersity of the diblock copolymer. Macromol. Theory Simul. 2002, 11(7), 785−793 doi: 10.1002/(ISSN)1521-3919

    6. [6]

      Coakley, K. M.; McGehee, M. D. Conjugated polymer photovoltaic cells. Chem. Mater. 2004, 16, 4533−4542 doi: 10.1021/cm049654n

    7. [7]

      Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324−1338 doi: 10.1021/cr050149z

    8. [8]

      Segalman, R. A.; McCulloch, B.; Kirmayer, S; Urban, J. J. Block copolymers for organic optoelectronics. Macromolecules 2009, 42, 9205−9216 doi: 10.1021/ma901350w

    9. [9]

      Olsen, B. D.; Segalman, R. A. Self-assembly of rod-coil block copolymers. Mater. Sci. Eng. R-Rep. 2008, 62, 37−66 doi: 10.1016/j.mser.2008.04.001

    10. [10]

      Jenekhe, S. A.; Chen, X. L. self-assembly of rod-coil block copolymers. Science 1998, 279, 1903−1907 doi: 10.1126/science.279.5358.1903

    11. [11]

      Lee, M.; Cho, B. K.; Zin, W. C. Supramolecular structures from rod-coil block copolymers. Chem. Rev. 2001, 101, 3869−3892 doi: 10.1021/cr0001131

    12. [12]

      Horsch, M. A.; Zhang, Z. L.; Glotzer, S. C. Self-assembly of polymer-tethered nanorods. Phys. Rev. Lett. 2005, 95, 056105 doi: 10.1103/PhysRevLett.95.056105

    13. [13]

      Chen, J. Z.; Zhang, C. X.; Sun, Z. Y.; Zheng, Y. S.; An, L. J. A novel self-consistent-field lattice model for block copolymers. J. Chem. Phys. 2006, 124, 104907 doi: 10.1063/1.2176619

    14. [14]

      Song, W. D.; Tang, P.; Qiu, F.; Yang, Y. L.; Shi, A. C. Phase behavior of semiflexible-coil diblock copolymers, a hybrid numerical SCFT approach. Soft Matter 2011, 7, 929−938 doi: 10.1039/C0SM00841A

    15. [15]

      AlSunaidi, B. A.; den Otter, W. K.; Clarke, J. H. R. Liquid-crystalline orde-ring in rod-coil diblock copolymersstudied by mesoscale simulations. Phil. Trans. R. Soc. Lond 2004, 362, 1773−1781 doi: 10.1098/rsta.2004.1414

    16. [16]

      Jiang, Z.; Dou, W.; Shen, Y.; Sun, T.; Xu, P. Residual occurrence and energy property of proteins in HNP model. Chinese Physics B 2015, 24, 116802 doi: 10.1088/1674-1056/24/11/116802

    17. [17]

      Shi, L. Y.; Hsieh, I. F.; Zhou, Y.; Yu, X.; Tian, H. J.; Pan, Y.; Fan, X. H.; Shen, Z. Thermoreversible order-order transition of a diblock copolymer induced by the unusual coil-rod conformational change of one block. Macromolecules 2012, 45, 9719−9726 doi: 10.1021/ma302048y

    18. [18]

      Tang, J.; Jiang, Y.; Zhang, X.; Yan, D.; Chen, J. Z. Y. Phase diagram of rod-coil diblock copolymer melts by self-consistent field theory. Macromolecules 2015, 48, 9060−9070 doi: 10.1021/acs.macromol.5b02235

    19. [19]

      Li, S. B.; Jiang, Y.; Chen, J. Z. Y. Phase transitions in semiflexible-rod diblock copolymers, a self-consistent field theory. Soft Matter 2014, 10, 8932−8944 doi: 10.1039/C4SM01884B

    20. [20]

      Gao, J.; Tang, P.; Yang, Y. Non-lamellae structures of coil-semiflexible diblock copolymers. Soft Matter 2013, 9, 69−81 doi: 10.1039/C2SM26758F

    21. [21]

      Jiang, Z.; Dou, W.; Sun, T.; Shen, Y.; Cao, D. Effects of chain flexibility on the conformational behavior of a single polymer chain. J. Polym. Res. 2015, 22, 236 doi: 10.1007/s10965-015-0875-3

    22. [22]

      Dong, B. J.; Huang, Z. H.; Chen, H. L.; Yan, L. T. Chain-stiffness-induced entropy effects mediate interfacial assembly of janus nanoparticles in block copolymers, from interfacial nanostructures to optical responses. Macromolecules 2015, 48, 5385−5393 doi: 10.1021/acs.macromol.5b01290

    23. [23]

      Tao, Y. F.; Olsen, B. D.; Ganesan, V.; Segalman, R. A. Nonlamellar phases in asymmetric rod-coil block copolymers at increased segregation strengths. Macromolecules 2007, 40, 3320−3327 doi: 10.1021/ma062876h

    24. [24]

      Song, W.; Tang, P.; Qiu, F.; Yang, Y.; Shi, A. C. Phase behavior of rod-coil diblock copolymer and homopolymer blends from self-consistent field theory. J. Phys. Chem. B 2011, 115, 8390−8400 doi: 10.1021/jp201972n

    25. [25]

      Gao, L. C.; Yao, J.; Shen, Z. H.; Wu, Y. X.; Chen, X.; Fan, X. F.; Zhou, Q. F. Self-assembly of rod-coil-rod triblock copolymer and homopolymer blends. Macromolecules 2009, 42, 1047−1050 doi: 10.1021/ma802566e

    26. [26]

      Netz, R. R.; Schick, M. Self-consistent field theory and its applications in polymer systems. Macromolecules 1998, 31, 5105−5122 doi: 10.1021/ma9717505

    27. [27]

      Wu, H. H.; He, L. L.; Xiang, X. H.; Wang, Y. W.; Jiang, Z. T. Phase behavior of the blend of rod-coil diblock copolymer and the corresponding coil homopolymer. Soft Matter 2014, 6, 6278−6285

    28. [28]

      Zhu, X. M.; Wang, L. Q.; Lin, J. P. Self-assembly of rod-coil multiblock copolymers, a strategy for creating hierarchical smectic structures. J. Phys. Chem. B. 2013, 117, 5748−5756 doi: 10.1021/jp400882h

    29. [29]

      Zhang, X.; Wang, L. Q.; Zhang, L. S.; Lin, J. P.; Jiang, T. Controllable hierarchical microstructures self-assembled from multiblock copolymers confined in thin. Langmuir 2015, 31, 2533 doi: 10.1021/la503985u

    30. [30]

      Hoogerbrugge, P. J.; Koelman, J. M. V. A. Simulation microscopic hydrodynamic phenomena dissipativeparticle dynamics. Europhys. Lett. 1992, 19, 155−160 doi: 10.1209/0295-5075/19/3/001

    31. [31]

      Groot, R. D.; Warren, P. B. Dissipative particle dynamics, bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997, 107, 4423−4435 doi: 10.1063/1.474784

    32. [32]

      Groot, R. D.; Madden, T. J. Dynamic simulation of diblock copolymer microphase separation. J. Chem. Phys. 1998, 108, 8713−8724 doi: 10.1063/1.476300

    33. [33]

      Micka, U.; Kremer, K. J. The persistence length of polyelectrolyte chains. J. Phys. Condens. Matter 1996, 8, 9463−9470 doi: 10.1088/0953-8984/8/47/046

    34. [34]

      Plimpton, S. J. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1 doi: 10.1006/jcph.1995.1039

    35. [35]

      Li, C. Y.; Tenneti, K. K.; Zhang, D.; Zhang, H.; Wan, X.; Chen, E.; Zhou, Q.; Carlos, A.; Igos, S.; Hsiao, B. S. Hierarchical assembly of a series of rod-coil block copolymers, supramolecular LC Phase in nanoenviroment. Macromolecules 2004, 37, 2854−2860 doi: 10.1021/ma0354905

    36. [36]

      Irving, J. H.; Kirkwood, J. G. The statistical mechanical theory of transport processes. IV. The Equations of Hydrodynamics. J. Chem. Phys. 1950, 18, 817

    37. [37]

      Masten, M. W.; Barrett, C. J. Liquid-crystalline behavior of rod-coil diblock copolymers. J. Chem. Phys. 1998, 109, 4108−4118 doi: 10.1063/1.477011

    38. [38]

      Chen, J. T.; Thomas, E. L.; Ober, C. K.; Hwang, S. S. Zigzag morphology of a poly(styrene-b-hexyl isocyanate) rod-coil block copolymer. Macromolecules 1995, 28, 1688−1697 doi: 10.1021/ma00109a048

    39. [39]

      Radzilowski, L. H.; Carragher, B. O.; Stupp, S. I. Three-dimensional self-assembly of rodcoil copolymer nanostructures. Macromolecules 1997, 30, 2110−2119 doi: 10.1021/ma9609700

    40. [40]

      Ryu, J. H.; Oh, N. K.; Zi, W. C.; Lee, M. J. Supramolecular reactor from self-assembly of rod-coil molecule in aqueous environment. J. Am. Chem. Soc. 2004, 126, 3551−3558 doi: 10.1021/ja039793q

    41. [41]

      Lee, M.; Cho, K. B. K.; Ihn, J.; Lee, W. K.; Oh, N. K.; Zin, W. C. Supramolecular honeycomb by self-assembly of molecular rods in rod-coil molecule. J. Am. Chem. Soc. 2001, 123, 4647−4648 doi: 10.1021/ja004071+

    42. [42]

      Masten, M. W. Cylinder-sphere epitaxial transition in block copolymer melts. J. Chem. Phys. 2001, 114, 8165 doi: 10.1063/1.1365085

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1302
  • HTML全文浏览量:  39
文章相关
  • 发布日期:  2018-10-01
  • 收稿日期:  2017-12-28
  • 接受日期:  2018-02-05
  • 修回日期:  2018-02-05
  • 网络出版日期:  2018-03-30
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章