Synthesis of Highly Regioregular, Head-to-Tail Coupled Poly(3-octylesterthiophene) via C―H/C―H Coupling Polycondensation
- Corresponding author: Qiang Zhang, zdianq2007@126.com (Q.Z.) Yan Lu, luyan@tjut.edu.cn (Y.L.)
Citation:
Qiang Zhang, Yue-Feng Li, Lu-Di Deng, Lin-Lin Zhao, Chen-Xi Li, Yan Lu. Synthesis of Highly Regioregular, Head-to-Tail Coupled Poly(3-octylesterthiophene) via C―H/C―H Coupling Polycondensation[J]. Chinese Journal of Polymer Science,
;2018, 36(9): 1019-1026.
doi:
10.1007/s10118-018-2116-9
Spintronics is a cutting-edge field of developing new electronic devices by manipulating the electron spin and magnetic moment [1]. Traditional spintronic research mainly focuses on transition metals and inorganic semiconductors, while organic molecules have the advantage of being extremely easy to realize efficient spin control by modifying the specific external conditions for desired electronic structures and magnetic characteristics. Corrole, as a ring-contracted porphyrin, is the aromatic analog of the central macrocycle of vitamin B12. Corrole has a squeezed inner cavity and three inner NHs in its free-base form, making it easier to stabilize high-valent metal ions and thus a promising candidate in spintronics.
When coordinated to metal ions such as Cu, Co, and Fe, the electron-rich corrole ligand could be partially oxidized to exhibit radical character, making it difficult to determine the exact oxidation states of central metals and ligands. The most controversial debate was the Cu(Ⅱ)/Cu(Ⅲ) dilemma on copper corrole [2]. The compound was initially thought to be a closed-shell Cu(Ⅲ) complex in 2000, but significant experimental and theoretical evidence over the next twenty years progressively revealed its open-shell singlet state ground state comprised of a Cu(Ⅱ) core and partially oxidized radical ligand (Fig. 1a).
Shen Z. and Wu F. from Nanjing University have developed a series of metallocorroles with extended π-conjugation systems, which not only facilitated the formation and stabilization of radical ligands, but also allowed spin configurations of complexes to be easily controlled [3-5]. Recently, Shen, Wu, and co-workers reported that the unambiguous Cu(Ⅱ) corrole with fully oxidized [4n + 1]π radical ligand was obtained through the benzo-fusion at the β-position of corrole ligand [6]. The ground-state conversion of copper corrole radical from singlet to triplet was achieved via a retro-Diels-Alder reaction (Fig. 1b).
The authors first synthesized a bicyclo[2.2.2]octadiene (BCOD) fused corrole 1-Cu by employing the classic H2O-MeOH approach with starting materials 4, 7-dihydro-4, 7-ethano-2H-isoindole and 3, 5-di-tert-butyl-benzaldehyde. Heating solid 1-Cu at 250 ℃ in vacuo cut the C—C bond in the BCOD bridge, eliminated the ethylene, and quantitatively afforded the benzo-fused 2-Cu. The singlet ground state of 1-Cu was clearly confirmed by the peripheral BCOD protons signals that appeared in the region of 6.60~2.09 ppm, while the signals of benzo protons in 2-Cu were located in a range of −6.2~−25.6 ppm, demonstrating its enhanced paramagnetism.
The conformations of copper corroles were assumed to be "inherently saddle distorted" owing to the strong d-π interactions of antiferromagnetically coupled Cu(Ⅱ) corrole radicals. When compared to other copper corroles, 2-Cu stood out due to its highly planar macrocycle with a mean plane deviation value of only 0.024 Å (Fig. 1c). The planar structure could perfectly sustain the ferromagnetic coupling (S = 1) between Cu(Ⅱ) and corrole radical.
The theoretical analysis of 2-Cu was conducted by the authors for three different states, including a close-shell singlet Cu(Ⅲ) (CS), an open-shell singlet antiferromagnetically coupled Cu(Ⅱ) corrole radical (OS) and a triplet ferromagnetically coupled Cu(Ⅱ) corrole radical (T). A lower T state was discovered for 2-Cu than the CS and OS states with a calculated singlet-triplet energy gap of 2.28 kcal/mol, providing theoretical support for the triplet ground state (Fig. 1d). The strongest support for the triplet ground state came from temperature- and field-dependent superconducting quantum interference device (SQUID) magnetometry. The χT value of 2-Cu in 2 K was 0.77 cm3 K/mol, and it reached approximately 1 cm3 K/mol at 300 K. The singlet-triplet energy gap was estimated to be 1.66 kcal/mol by fitting the χT–T plot (Fig. 1e). The field-dependent magnetization plot of 2-Cu at 2 K was fitted to a Brillouin function with S = 0.89, which was close to the value (S = 1) corresponding to the triplet ground state (Fig. 1f). The magnetic hysteresis of 2-Cu was observed at 2 K. Moreover, 2-Cu exhibits remarkable stability in air despite its radical character. The calculated density plots of spin and SOMO both demonstrate that the density is concentrated mostly in the inner corrole ring, which is nicely protected by fused benzenes with low reactivity.
The research conducted by Shen's group introduces a new approach to the fine-tuning of interactions between metal center and corrole ligand and provides a promising strategy for the creation of stable corrole radical complexes with distinctive high-spin systems. The strategy will further trigger the development of novel functional materials based on corroles and their work will encourage an increasing amount of spintronics research for the use of innovative magnetic and electrical devices.
Bujak, P.; Kulszewicz-Bajer, I.; Zagorska, M.; Maurel, V.; Wielgus, I.; Pron, A. Polymers for electronics and spintronics. Chem. Soc. Rev. 2013, 42(23), 8895−8999
doi: 10.1039/c3cs60257e
Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 2011, 112(4), 2208−2267
Kim, D. H.; Lee, B. L.; Moon, H.; Kang, H. M.; Jeong, E. J.; Park, J. I.; Han, K. M.; Lee, S.; Yoo, B. W.; Koo, B. W.; Kim, J. Y.; Lee, W. H.; Cho, K.; Becerril, H. A.; Bao, Z. Liquid-crystalline semiconducting copolymers with intramolecular donor-acceptor building blocks for high-stability polymer transistors. J. Am. Chem. Soc. 2009, 131(17), 6124−6132
doi: 10.1021/ja8095569
Carsten, B.; He, F.; Son, H. J.; Xu, T.; Yu, L. Stille polycondensation for synthesis of functional materials. Chem. Rev. 2011, 111(3), 1493−1528
doi: 10.1021/cr100320w
Grimsdale, A. C.; Leok Chan, K.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev. 2009, 109(3), 897−1091
doi: 10.1021/cr000013v
Shirota, Y.; Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 2007, 107(4), 953−1010
doi: 10.1021/cr050143+
Heeger, A. Semiconducting polymers: the third generation. Chem. Soc. Rev. 2010, 39(7), 2354−2371
doi: 10.1039/b914956m
Armstrong, N. R.; Veneman, P. A.; Ratcliff, E.; Placencia, D.; Brumbach, M. Oxide contacts in organic photovoltaics: characterization and control of near-surface composition in indium-tin oxide (ITO) electrodes. Acc. Chem. Res. 2009, 42(11), 1748−1757
doi: 10.1021/ar900096f
Chen, Y.; Wan, X.; Long, G. High performance photovoltaic applications using solution-processed small molecules. Acc. Chem. Res. 2013, 46(11), 2645−2655
doi: 10.1021/ar400088c
Lin, Y.; Fan, H.; Li, Y.; Zhan, X. Thiazole-based organic semiconductors for organic electronics. Adv. Mater. 2012, 24(23), 3087−3106
doi: 10.1002/adma.201200721
Chen, J.; Cao, Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc. Chem. Res. 2009, 42(11), 1709−1718
doi: 10.1021/ar900061z
Murphy, A. R.; Fréchet, J. M. J. Organic semiconducting oligomers for use in thin film transistors. Chem. Rev. 2007, 107(4), 1066−1096
doi: 10.1021/cr0501386
Cheng, D.; Li, Y.; Wang, J.; Sun, Y.; Jin, L.; Li, C.; Lu, Y. Fluorescence and colorimetric detection of ATP based on a strategy of self-promoting aggregation of a water-soluble polythiophene derivative. Chem. Commun. 2015, 51(40), 8544−8546
doi: 10.1039/C5CC01713K
Pomerantz, M.; Cheng, Y.; Kasim, R. K.; Elsenbaumer, R. L. Poly(alkyl thiophene-3-carboxylates). Synthesis, properties and electroluminescence studies of polythiophenes containing a carbonyl group directly attached to the ring. J. Mater. Chem. 1999, 9(9), 2155−2163
doi: 10.1039/a902504i
Osaka, I.; McCullough, R. D. Advances in molecular design and synthesis of regioregular polythiophenes. Acc. Chem. Res. 2008, 41(9), 1202−1214
doi: 10.1021/ar800130s
Osaka, I.; McCullough, R. D., Regioregular and regiosymmetric polythiophenes. In "Conjugated Polymer Synthesis", Wiley-VCH Verlag GmbH & Co. KGaA: 2010; p. 59–90.
Steyrleuthner, R.; Di Pietro, R.; Collins, B. A.; Polzer, F.; Himmelberger, S.; Schubert, M.; Chen, Z.; Zhang, S.; Salleo, A.; Ade, H.; Facchetti, A.; Neher, D. The role of regioregularity, crystallinity, and chain orientation on electron transport in a high-mobility n-type copolymer. J. Am. Chem. Soc. 2014, 136(11), 4245−4256
doi: 10.1021/ja4118736
Woo, C. H.; Thompson, B. C.; Kim, B. J.; Toney, M. F.; Fréchet, J. M. J. The influence of poly(3-hexylthiophene) regioregularity on fullerene-composite solar cell performance. J. Am. Chem. Soc. 2008, 130(48), 16324−16329
doi: 10.1021/ja806493n
Chochos, C. L.; Choulis, S. A. How the structural deviations on the backbone of conjugated polymers influence their optoelectronic properties and photovoltaic performance. Prog. Polym. Sci. 2011, 36(10), 1326−1414
doi: 10.1016/j.progpolymsci.2011.04.003
McCullough, R. D.; Lowe, R. D. Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes). J. Chem. Soc., Chem. Commun. 1992, (1), 70−72
doi: 10.1039/c39920000070
Chen, T. A.; Rieke, R. D. The first regioregular head-to-tail poly(3-hexylthiophene-2,5-diyl) and a regiorandom isopolymer: nickel versus palladium catalysis of 2(5)-bromo-5(2)-(bromozincio)-3-hexylthiophene polymerization. J. Am. Chem. Soc. 1992, 114(25), 10087−10088
doi: 10.1021/ja00051a066
Loewe, R. S.; Khersonsky, S. M.; McCullough, R. D. A simple method to prepare head-to-tail coupled, regioregular poly(3-alkylthiophenes) using grignard metathesis. Adv. Mater. 1999, 11(3), 250−253
doi: 10.1002/(ISSN)1521-4095
Khlyabich, P. P.; Burkhart, B.; Thompson, B. C. Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers. J. Am. Chem. Soc. 2012, 134(22), 9074−9077
doi: 10.1021/ja302935n
Iraqi, A.; W. Barker, G. Synthesis and characterisation of telechelic regioregular head-to-tail poly(3-alkylthiophenes). J. Mater. Chem. 1998, 8(1), 25−29
doi: 10.1039/a706583c
Baek, M. J.; Lee, S. H.; Zong, K.; Lee, Y. S. Low band gap conjugated polymers consisting of alternating dodecyl thieno[3,4-b]thiophene-2-carboxylate and one or two thiophene rings: synthesis and photovoltaic property. Synth. Met. 2010, 160(11-12), 1197−1203
doi: 10.1016/j.synthmet.2010.03.008
Mercier, L. G.; Leclerc, M. Direct (hetero)arylation: A new tool for polymer chemists. Acc. Chem. Res. 2013, 46(7), 1597−1605
doi: 10.1021/ar3003305
Berrouard, P.; Najari, A.; Pron, A.; Gendron, D.; Morin, P. O.; Pouliot, J. R.; Veilleux, J.; Leclerc, M. Synthesis of 5-alkyl[3,4-c]thienopyrrole-4,6-dione-based polymers by direct heteroarylation. Angew. Chem. Int. Ed. 2012, 51(9), 2068−2071
doi: 10.1002/anie.201106411
Wang, Q.; Takita, R.; Kikuzaki, Y.; Ozawa, F. Palladium-catalyzed dehydrohalogenative polycondensation of 2-bromo-3-hexylthiophene: an efficient approach to head-to-tail poly(3-hexylthiophene). J. Am. Chem. Soc. 2010, 132(33), 11420−11421
doi: 10.1021/ja105767z
Kuramochi, M.; Kuwabara, J.; Lu, W.; Kanbara, T. Direct arylation polycondensation of bithiazole derivatives with various acceptors. Macromolecules 2014, 47(21), 7378−7385
doi: 10.1021/ma5014397
Huang, Q.; Qin, X.; Li, B.; Lan, J.; Guo, Q.; You, J. Cu-catalysed oxidative C―H/C―H coupling polymerisation of benzodiimidazoles: an efficient approach to regioregular polybenzodiimidazoles for blue-emitting materials. Chem. Commun. 2014, 50(89), 13739−13741
doi: 10.1039/C4CC06291D
Zhang, Q.; Wan, X.; Lu, Y.; Li, Y.; Li, Y.; Li, C.; Wu, H.; Chen, Y. The synthesis of 5-alkyl[3,4-c]thienopyrrole-4,6-dione-based polymers using a Pd-catalyzed oxidative C―H/C―H homopolymerization reaction. Chem. Commun. 2014, 50(83), 12497−12499
doi: 10.1039/C4CC06284A
Zhang, Q.; Li, Y.; Lu, Y.; Zhang, H.; Li, M.; Yang, Y.; Wang, J.; Chen, Y.; Li, C. Pd-catalysed oxidative C―H/C―H coupling polymerization for polythiazole-based derivatives. Polymer 2015, 68(0), 227−233
Tsuchiya, K.; Ogino, K. Catalytic oxidative polymerization of thiophene derivatives. Polym. J. 2013, 45(3), 281−286
doi: 10.1038/pj.2012.146
Hu, X.; Zuo, L.; Fu, W.; Larsen-Olsen, T. T.; Helgesen, M.; Bundgaard, E.; Hagemann, O.; Shi, M.; Krebs, F. C.; Chen, H. Incorporation of ester groups into low band-gap diketopyrrolopyrrole containing polymers for solar cell applications. J. Mater. Chem. 2012, 22(31), 15710−15716
doi: 10.1039/c2jm31700a
Sato, M.; Morii, H. Nuclear magnetic resonance studies on electrochemically prepared poly(3-dodecylthiophene). Macromolecules 1991, 24(5), 1196−1200
doi: 10.1021/ma00005a035
Sato, M.; Shimizu, T.; Yamauchi, A. Electrochemical copolymerization of 3-dodecylthiophene and 3-methylthiophene. Makromol. Chem. 1990, 191(2), 313−19
doi: 10.1002/macp.1990.021910205
Pomerantz, M.; Yang, H.; Cheng, Y. Poly(alkyl thiophene-3-carboxylates). Synthesis and characterization of polythiophenes with a carbonyl group directly attached to the ring. Macromolecules 1995, 28(17), 5706−5708
doi: 10.1021/ma00121a003
Gobalasingham, N. S.; Noh, S.; Thompson, B. C. Palladium-catalyzed oxidative direct arylation polymerization (Oxi-DArP) of an ester-functionalized thiophene. Polym. Chem. 2016, 7(8), 1623−1631
doi: 10.1039/C5PY01973G
Forrest, J. 121. The Ullmann biaryl synthesis. Part V. The influence of ring substituents on the rate of self-condensation of an aryl halide. Journal of the Chemical Society (Resumed) 1960, 592−594
Huggins, M. Dependence of polymer properties on temperature of polymerization. J. Am. Chem. Soc. 1944, 66(11), 1991−1992
doi: 10.1021/ja01239a513
Rudenko, A. E.; Wiley, C. A.; Tannaci, J. F.; Thompson, B. C. Optimization of direct arylation polymerization conditions for the synthesis of poly(3-hexylthiophene). J. Polym. Sci., Part A: Polym. Chem. 2013, 51(12), 2660−2668
doi: 10.1002/pola.26655
Zhang, Q.; Chang, M.; Lu, Y.; Sun, Y.; Li, C.; Yang, X.; Zhang, M.; Chen, Y. A direct C―H coupling method for preparing π-conjugated functional polymers with high regioregularity. Macromolecules 2018, 51(2), 379−388
doi: 10.1021/acs.macromol.7b02390
Xi, P.; Yang, F.; Qin, S.; Zhao, D.; Lan, J.; Gao, G.; Hu, C.; You, J. Palladium(II)-catalyzed oxidative C―H/C―H cross-coupling of heteroarenes. J. Am. Chem. Soc. 2010, 132(6), 1822−1824
doi: 10.1021/ja909807f
Yao, S.; Beginn, U.; Gress, T.; Lysetska, M.; Würthner, F. Supramolecular polymerization and gel formation of bis(merocyanine) dyes driven by dipolar aggregation. J. Am. Chem. Soc. 2004, 126(26), 8336−8348
doi: 10.1021/ja0496367
West, W.; Pearce, S. The dimeric state of cyanine dyes. J Phys. Chen. 1965, 69(6), 1894−1903
doi: 10.1021/j100890a019
Yahav, G.; Haas, Y. Silicon tetrafluoride visible luminescence induced by high-power CO2 laser irradiation. Chem. Phys. Lett. 1981, 83(3), 493−497
doi: 10.1016/0009-2614(81)85508-X
Potai, R.; Traiphol, R. Control over the photophysical properties of nanoparticles of regioregular poly(3-octylthiophene) using various poor solvents. Synth. Met. 2015, 203, 1−9
doi: 10.1016/j.synthmet.2015.02.005
Bujak, P.; Kulszewicz-Bajer, I.; Zagorska, M.; Maurel, V.; Wielgus, I.; Pron, A. Polymers for electronics and spintronics. Chem. Soc. Rev. 2013, 42(23), 8895−8999
doi: 10.1039/c3cs60257e
Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 2011, 112(4), 2208−2267
Kim, D. H.; Lee, B. L.; Moon, H.; Kang, H. M.; Jeong, E. J.; Park, J. I.; Han, K. M.; Lee, S.; Yoo, B. W.; Koo, B. W.; Kim, J. Y.; Lee, W. H.; Cho, K.; Becerril, H. A.; Bao, Z. Liquid-crystalline semiconducting copolymers with intramolecular donor-acceptor building blocks for high-stability polymer transistors. J. Am. Chem. Soc. 2009, 131(17), 6124−6132
doi: 10.1021/ja8095569
Carsten, B.; He, F.; Son, H. J.; Xu, T.; Yu, L. Stille polycondensation for synthesis of functional materials. Chem. Rev. 2011, 111(3), 1493−1528
doi: 10.1021/cr100320w
Grimsdale, A. C.; Leok Chan, K.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev. 2009, 109(3), 897−1091
doi: 10.1021/cr000013v
Shirota, Y.; Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 2007, 107(4), 953−1010
doi: 10.1021/cr050143+
Heeger, A. Semiconducting polymers: the third generation. Chem. Soc. Rev. 2010, 39(7), 2354−2371
doi: 10.1039/b914956m
Armstrong, N. R.; Veneman, P. A.; Ratcliff, E.; Placencia, D.; Brumbach, M. Oxide contacts in organic photovoltaics: characterization and control of near-surface composition in indium-tin oxide (ITO) electrodes. Acc. Chem. Res. 2009, 42(11), 1748−1757
doi: 10.1021/ar900096f
Chen, Y.; Wan, X.; Long, G. High performance photovoltaic applications using solution-processed small molecules. Acc. Chem. Res. 2013, 46(11), 2645−2655
doi: 10.1021/ar400088c
Lin, Y.; Fan, H.; Li, Y.; Zhan, X. Thiazole-based organic semiconductors for organic electronics. Adv. Mater. 2012, 24(23), 3087−3106
doi: 10.1002/adma.201200721
Chen, J.; Cao, Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc. Chem. Res. 2009, 42(11), 1709−1718
doi: 10.1021/ar900061z
Murphy, A. R.; Fréchet, J. M. J. Organic semiconducting oligomers for use in thin film transistors. Chem. Rev. 2007, 107(4), 1066−1096
doi: 10.1021/cr0501386
Cheng, D.; Li, Y.; Wang, J.; Sun, Y.; Jin, L.; Li, C.; Lu, Y. Fluorescence and colorimetric detection of ATP based on a strategy of self-promoting aggregation of a water-soluble polythiophene derivative. Chem. Commun. 2015, 51(40), 8544−8546
doi: 10.1039/C5CC01713K
Pomerantz, M.; Cheng, Y.; Kasim, R. K.; Elsenbaumer, R. L. Poly(alkyl thiophene-3-carboxylates). Synthesis, properties and electroluminescence studies of polythiophenes containing a carbonyl group directly attached to the ring. J. Mater. Chem. 1999, 9(9), 2155−2163
doi: 10.1039/a902504i
Osaka, I.; McCullough, R. D. Advances in molecular design and synthesis of regioregular polythiophenes. Acc. Chem. Res. 2008, 41(9), 1202−1214
doi: 10.1021/ar800130s
Osaka, I.; McCullough, R. D., Regioregular and regiosymmetric polythiophenes. In "Conjugated Polymer Synthesis", Wiley-VCH Verlag GmbH & Co. KGaA: 2010; p. 59–90.
Steyrleuthner, R.; Di Pietro, R.; Collins, B. A.; Polzer, F.; Himmelberger, S.; Schubert, M.; Chen, Z.; Zhang, S.; Salleo, A.; Ade, H.; Facchetti, A.; Neher, D. The role of regioregularity, crystallinity, and chain orientation on electron transport in a high-mobility n-type copolymer. J. Am. Chem. Soc. 2014, 136(11), 4245−4256
doi: 10.1021/ja4118736
Woo, C. H.; Thompson, B. C.; Kim, B. J.; Toney, M. F.; Fréchet, J. M. J. The influence of poly(3-hexylthiophene) regioregularity on fullerene-composite solar cell performance. J. Am. Chem. Soc. 2008, 130(48), 16324−16329
doi: 10.1021/ja806493n
Chochos, C. L.; Choulis, S. A. How the structural deviations on the backbone of conjugated polymers influence their optoelectronic properties and photovoltaic performance. Prog. Polym. Sci. 2011, 36(10), 1326−1414
doi: 10.1016/j.progpolymsci.2011.04.003
McCullough, R. D.; Lowe, R. D. Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes). J. Chem. Soc., Chem. Commun. 1992, (1), 70−72
doi: 10.1039/c39920000070
Chen, T. A.; Rieke, R. D. The first regioregular head-to-tail poly(3-hexylthiophene-2,5-diyl) and a regiorandom isopolymer: nickel versus palladium catalysis of 2(5)-bromo-5(2)-(bromozincio)-3-hexylthiophene polymerization. J. Am. Chem. Soc. 1992, 114(25), 10087−10088
doi: 10.1021/ja00051a066
Loewe, R. S.; Khersonsky, S. M.; McCullough, R. D. A simple method to prepare head-to-tail coupled, regioregular poly(3-alkylthiophenes) using grignard metathesis. Adv. Mater. 1999, 11(3), 250−253
doi: 10.1002/(ISSN)1521-4095
Khlyabich, P. P.; Burkhart, B.; Thompson, B. C. Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers. J. Am. Chem. Soc. 2012, 134(22), 9074−9077
doi: 10.1021/ja302935n
Iraqi, A.; W. Barker, G. Synthesis and characterisation of telechelic regioregular head-to-tail poly(3-alkylthiophenes). J. Mater. Chem. 1998, 8(1), 25−29
doi: 10.1039/a706583c
Baek, M. J.; Lee, S. H.; Zong, K.; Lee, Y. S. Low band gap conjugated polymers consisting of alternating dodecyl thieno[3,4-b]thiophene-2-carboxylate and one or two thiophene rings: synthesis and photovoltaic property. Synth. Met. 2010, 160(11-12), 1197−1203
doi: 10.1016/j.synthmet.2010.03.008
Mercier, L. G.; Leclerc, M. Direct (hetero)arylation: A new tool for polymer chemists. Acc. Chem. Res. 2013, 46(7), 1597−1605
doi: 10.1021/ar3003305
Berrouard, P.; Najari, A.; Pron, A.; Gendron, D.; Morin, P. O.; Pouliot, J. R.; Veilleux, J.; Leclerc, M. Synthesis of 5-alkyl[3,4-c]thienopyrrole-4,6-dione-based polymers by direct heteroarylation. Angew. Chem. Int. Ed. 2012, 51(9), 2068−2071
doi: 10.1002/anie.201106411
Wang, Q.; Takita, R.; Kikuzaki, Y.; Ozawa, F. Palladium-catalyzed dehydrohalogenative polycondensation of 2-bromo-3-hexylthiophene: an efficient approach to head-to-tail poly(3-hexylthiophene). J. Am. Chem. Soc. 2010, 132(33), 11420−11421
doi: 10.1021/ja105767z
Kuramochi, M.; Kuwabara, J.; Lu, W.; Kanbara, T. Direct arylation polycondensation of bithiazole derivatives with various acceptors. Macromolecules 2014, 47(21), 7378−7385
doi: 10.1021/ma5014397
Huang, Q.; Qin, X.; Li, B.; Lan, J.; Guo, Q.; You, J. Cu-catalysed oxidative C―H/C―H coupling polymerisation of benzodiimidazoles: an efficient approach to regioregular polybenzodiimidazoles for blue-emitting materials. Chem. Commun. 2014, 50(89), 13739−13741
doi: 10.1039/C4CC06291D
Zhang, Q.; Wan, X.; Lu, Y.; Li, Y.; Li, Y.; Li, C.; Wu, H.; Chen, Y. The synthesis of 5-alkyl[3,4-c]thienopyrrole-4,6-dione-based polymers using a Pd-catalyzed oxidative C―H/C―H homopolymerization reaction. Chem. Commun. 2014, 50(83), 12497−12499
doi: 10.1039/C4CC06284A
Zhang, Q.; Li, Y.; Lu, Y.; Zhang, H.; Li, M.; Yang, Y.; Wang, J.; Chen, Y.; Li, C. Pd-catalysed oxidative C―H/C―H coupling polymerization for polythiazole-based derivatives. Polymer 2015, 68(0), 227−233
Tsuchiya, K.; Ogino, K. Catalytic oxidative polymerization of thiophene derivatives. Polym. J. 2013, 45(3), 281−286
doi: 10.1038/pj.2012.146
Hu, X.; Zuo, L.; Fu, W.; Larsen-Olsen, T. T.; Helgesen, M.; Bundgaard, E.; Hagemann, O.; Shi, M.; Krebs, F. C.; Chen, H. Incorporation of ester groups into low band-gap diketopyrrolopyrrole containing polymers for solar cell applications. J. Mater. Chem. 2012, 22(31), 15710−15716
doi: 10.1039/c2jm31700a
Sato, M.; Morii, H. Nuclear magnetic resonance studies on electrochemically prepared poly(3-dodecylthiophene). Macromolecules 1991, 24(5), 1196−1200
doi: 10.1021/ma00005a035
Sato, M.; Shimizu, T.; Yamauchi, A. Electrochemical copolymerization of 3-dodecylthiophene and 3-methylthiophene. Makromol. Chem. 1990, 191(2), 313−19
doi: 10.1002/macp.1990.021910205
Pomerantz, M.; Yang, H.; Cheng, Y. Poly(alkyl thiophene-3-carboxylates). Synthesis and characterization of polythiophenes with a carbonyl group directly attached to the ring. Macromolecules 1995, 28(17), 5706−5708
doi: 10.1021/ma00121a003
Gobalasingham, N. S.; Noh, S.; Thompson, B. C. Palladium-catalyzed oxidative direct arylation polymerization (Oxi-DArP) of an ester-functionalized thiophene. Polym. Chem. 2016, 7(8), 1623−1631
doi: 10.1039/C5PY01973G
Forrest, J. 121. The Ullmann biaryl synthesis. Part V. The influence of ring substituents on the rate of self-condensation of an aryl halide. Journal of the Chemical Society (Resumed) 1960, 592−594
Huggins, M. Dependence of polymer properties on temperature of polymerization. J. Am. Chem. Soc. 1944, 66(11), 1991−1992
doi: 10.1021/ja01239a513
Rudenko, A. E.; Wiley, C. A.; Tannaci, J. F.; Thompson, B. C. Optimization of direct arylation polymerization conditions for the synthesis of poly(3-hexylthiophene). J. Polym. Sci., Part A: Polym. Chem. 2013, 51(12), 2660−2668
doi: 10.1002/pola.26655
Zhang, Q.; Chang, M.; Lu, Y.; Sun, Y.; Li, C.; Yang, X.; Zhang, M.; Chen, Y. A direct C―H coupling method for preparing π-conjugated functional polymers with high regioregularity. Macromolecules 2018, 51(2), 379−388
doi: 10.1021/acs.macromol.7b02390
Xi, P.; Yang, F.; Qin, S.; Zhao, D.; Lan, J.; Gao, G.; Hu, C.; You, J. Palladium(II)-catalyzed oxidative C―H/C―H cross-coupling of heteroarenes. J. Am. Chem. Soc. 2010, 132(6), 1822−1824
doi: 10.1021/ja909807f
Yao, S.; Beginn, U.; Gress, T.; Lysetska, M.; Würthner, F. Supramolecular polymerization and gel formation of bis(merocyanine) dyes driven by dipolar aggregation. J. Am. Chem. Soc. 2004, 126(26), 8336−8348
doi: 10.1021/ja0496367
West, W.; Pearce, S. The dimeric state of cyanine dyes. J Phys. Chen. 1965, 69(6), 1894−1903
doi: 10.1021/j100890a019
Yahav, G.; Haas, Y. Silicon tetrafluoride visible luminescence induced by high-power CO2 laser irradiation. Chem. Phys. Lett. 1981, 83(3), 493−497
doi: 10.1016/0009-2614(81)85508-X
Potai, R.; Traiphol, R. Control over the photophysical properties of nanoparticles of regioregular poly(3-octylthiophene) using various poor solvents. Synth. Met. 2015, 203, 1−9
doi: 10.1016/j.synthmet.2015.02.005
Huakang Zong , Xinyue Li , Yanlin Zhang , Faxun Wang , Xingxing Yu , Guotao Duan , Yuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195
Yuemin Chen , Yunqi Wu , Guoao Wang , Feihu Cui , Haitao Tang , Yingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445
Shuai Tang , Zian Wang , Mengyi Zhu , Xinyun Zhao , Xiaoyun Hu , Hua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503
Xin Li , Jia-Min Lu , Bo Li , Chen Zhao , Bei-Bei Yang , Li Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
Shulei Hu , Yu Zhang , Xiong Xie , Luhan Li , Kaixian Chen , Hong Liu , Jiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
Jingping Hu , Jing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14–epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733
Yujia Shi , Yan Qiao , Pengfei Xie , Miaomiao Tian , Xingwei Li , Junbiao Chang , Bingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544
Jinpeng Du , Junlin Chen , Yulong Shan , Tongliang Zhang , Yu Sun , Zhongqi Liu , Xiaoyan Shi , Wenpo Shan , Yunbo Yu , Hong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019
Qiao Song , Xue Peng , Zhouyu Wang , Leyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869
Wei-Bin Li , Xiao-Chao Huang , Pei Liu , Jie Kong , Guo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543
Qijun Tang , Wenguang Tu , Yong Zhou , Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
Guoju Guo , Xufeng Li , Jie Ma , Yongjia Shi , Jian Lv , Daoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024
Pengfei Zhang , Qingxue Ma , Zhiwei Jiang , Xiaohua Xu , Zhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
Huirong Chen , Yingzhi He , Yan Han , Jianbo Hu , Jiantang Li , Yunjia Jiang , Basem Keshta , Lingyao Wang , Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508