Citation: Jing-Jun Wu, Li-Mei Huang, Qian Zhao, Tao Xie. 4D Printing: History and Recent Progress[J]. Chinese Journal of Polymer Science, ;2018, 36(5): 563-575. doi: 10.1007/s10118-018-2089-8 shu

4D Printing: History and Recent Progress

  • Corresponding author: Tao Xie, taoxie@zju.edu.cn
  • These authors contributed equally to this work
  • Received Date: 6 October 2017
    Accepted Date: 6 November 2017
    Available Online: 26 December 2017

  • 4D printing has attracted great interest since the concept was introduced in 2012. The past 5 years have witnessed rapid advances in both 4D printing processes and materials. Unlike 3D printing, 4D printing allows the printed part to change its shape and function with time in response to change in external conditions such as temperature, light, electricity, and water. In this review, we first overview the history of 4D printing and discuss its definition. We then summarize recent technological advances in 4D printing with focuses on methods, materials, and their intrinsic links. Finally, we discuss potential applications and offer perspectives for this exciting new field.
  • 加载中
    1. [1]

      Hull, C. W., 1986, U.S. Pat., 5, 556, 590.

    2. [2]

      Bower, C., Meitl, M., Gomez, D., Bonafede, S. and Kneeburg, D., 2016, U.S. Pat., 9358775.

    3. [3]

      Tofail, S. A. M. ; Koumoulos, E. P. ; Bandyopadhyay, A. ; Bose, S. ; O'Donoghue, L. ; Charitidis, C. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Materialstoday, in press.

    4. [4]

      Shirazi S. F. S., Gharehkhani S., Mehrali M., Yarmand H., Metselaar H. S. C., Kadri N. A., Osman N. A. A.. A review on powder-based additive manufacturing for tissue engineering:selective laser sintering and inkjet 3D printing[J]. Sci. Technol. Adv. Mat., 2015,16(3)033502. doi: 10.1088/1468-6996/16/3/033502

    5. [5]

      Tumbleston J. R., Shirvanyants D., Ermoshkin N., Janusziewicz R., Johnson A. R., Kelly D., Chen K., Pinschmidt R., Rolland J. P., Ermoshkin A.. Additive manufacturing[J]. Continuous liquid interface production of 3D objects. Science, 2015,347(6228):1349-1352.  

    6. [6]

      Geier, B., Local Motors shows Strati, the world's first 3D-printed car. http://fortune.com/2015/01/13/local-motors-shows-strati-the-worlds-first-3d-printed-car/.

    7. [7]

      Simmons, D., Airbus had 1, 000 parts 3D printed to meet deadline. http://www.bbc.com/news/technology-32597809.

    8. [8]

      Tibbits, S., The emergence of "4D printing". http://www.ted.com/talks/skylar_tibbits_the_emergence_of_4d_printing.

    9. [9]

      Campbell T., Tibbits S., Garrett B.. The next wave:4D printing-programming the material world[J]. Frame, 2014.  

    10. [10]

      Xie T.. Tunable polymer multi-shape memory effect[J]. Nature, 2010,464(7286):267-270. doi: 10.1038/nature08863

    11. [11]

      Zhao Q., Qi H. J., Xie T.. Recent progress in shape memory polymer:new behavior, enabling materials, and mechanistic understanding[J]. Prog. Polym. Sci., 2015:49-120.  

    12. [12]

      Zhao Q., Zou W., Luo Y., Xie T.. Shape memory polymer network with thermally distinct elasticity and plasticity[J]. Sci. Adv., 2016,2(1). doi: 10.1126/sciadv.1501297

    13. [13]

      Zheng N., Fang Z., Zou W., Zhao Q., Xie T.. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation[J]. Angew. Chem. Int. Ed., 2016,55(38):11421-11425. doi: 10.1002/anie.201602847

    14. [14]

      Hj V. D. L., Herber S., Olthuis W., Bergveld P.. Stimulus-sensitive hydrogels and their applications in chemical (micro)analysis[J]. Analyst, 2003,128(4):325-331. doi: 10.1039/b210140h

    15. [15]

      Prabaharan M., Mano J. F.. Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials[J]. Macromol. Biosci., 2006,6(12):991-1008. doi: 10.1002/(ISSN)1616-5195

    16. [16]

      Tokarev I., Minko S.. Stimuli-responsive hydrogel thin films[J]. Soft matter, 2009,5(3):511-524. doi: 10.1039/B813827C

    17. [17]

      Qiu Y., Park K.. Environment-sensitive hydrogels for drug delivery[J]. Adv. Drug. Deliv. Rev., 2012,64(3):49-60.  

    18. [18]

      Shankar R., Ghosh T. K., Spontak R. J.. Dielectric elastomers as next-generation polymeric actuators[J]. Soft matter, 2007,3(9):1116-1129. doi: 10.1039/b705737g

    19. [19]

      Yang Z., Herd G. A., Clarke S. M., Tajbakhsh A. R., Terentjev E. M., Huck W. T.. Thermal and UV shape shifting of surface topography[J]. J. Am. Chem. Soc., 2006,128(4):1074-1075. doi: 10.1021/ja056866s

    20. [20]

      Naficy S., Gately R., Gorkin R., Xin H., Spinks G. M.. 4D printing of reversible shape morphing hydrogel structures[J]. Macromol. Mater. Eng., 2017,302(1). doi: 10.1002/mame.201600212

    21. [21]

      Raviv D., Zhao W., McKnelly C., Papadopoulou A., Kadambi A., Shi B., Hirsch S., Dikovsky D., Zyracki M., Olguin C., Raskar R., Tibbits S.. Active printed materials for complex self-evolving deformations[J]. Sci. Rep., 2014,4. doi: 10.1038/srep07422

    22. [22]

      Tibbits S., McKnelly C., Olguin C., Dikovsky D., Hirsch S.. 4D printing and universal transformation[J]. Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture, 2014:539-548.  

    23. [23]

      Zhao Z., Wu J., Mu X., Chen H., Qi H. J., Fang D.. Desolvation induced origami of photocurable polymers by digit light processing[J]. Macromol. Rapid. Commun., 2017,38(13). doi: 10.1002/marc.201600625

    24. [24]

      3D SYSTEMS, https://cn.3dsystems.com/3d-printers/projet-mjp-3600-dental.

    25. [25]

      Stratasy, http://www.stratasys.com/3d-printers/technologies/polyjet-technology.

    26. [26]

      Lewis J. A., Smay J. E., Stuecker J., Cesarano J.. Direct ink writing of three-dimensional ceramic structures[J]. J. Am. Ceram. Soc., 2010,89(12):3599-3609.  

    27. [27]

      Ionov L.. 3D microfabrication using stimuli-responsive self-folding polymer films[J]. Polym. Rev., 2013,53(1):92-107. doi: 10.1080/15583724.2012.751923

    28. [28]

      Ma C., Li T., Zhao Q., Yang X., Wu J., Luo Y., Xie T.. Supramolecular lego assembly towards three-dimensional multi-responsive hydrogels[J]. Adv. Mater., 2014,26(32):5665-5669. doi: 10.1002/adma.201402026

    29. [29]

      Zhao Q., Sun J., Ling Q., Zhou Q.. Synthesis of macroporous thermosensitive hydrogels:A novel method of controlling pore size[J]. Langmuir, 2009,25(5):3249-3254. doi: 10.1021/la8038939

    30. [30]

      Gong J. P., Katsuyama Y., Kurokawa T., Osada Y.. Double-Network hydrogels with extremely high mechanical strength[J]. Adv. Mater., 2003,15(14):1155-1158. doi: 10.1002/adma.200304907

    31. [31]

      Ge Q., Qi H. J., Dunn M. L.. Active materials by four-dimension printing[J]. Appl. Phys. Lett., 2013,103(13). doi: 10.1063/1.4819837

    32. [32]

      Ge Q., Dunn C. K., Qi H. J., Dunn M. L.. Active origami by 4D printing[J]. Smart Mater. Struct., 2014,23(9). doi: 10.1088/0964-1726/23/9/094007

    33. [33]

      Genzer, J. ; Liu, Y. ; Shaw, B. ; Dickey, M. In Light-induced sequential self-folding of pre-strained polymer sheets, APS Meeting 2014. 

    34. [34]

      Ying L., Shaw B., Dickey M. D., Genzer J.. Sequential self-folding of polymer sheets[J]. Sci. Adv., 2017,3(3). doi: 10.1126/sciadv.1602417

    35. [35]

      Mao Y., Yu K., Isakov M. S., Wu J., Dunn M. L., Qi H. J.. Sequential self-folding structures by 3D printed digital shape memory polymers[J]. Sci. Rep., 2015,5. doi: 10.1038/srep13616

    36. [36]

      Ding Z., Yuan C., Peng X., Wang T., Qi H. J., Dunn M. L.. Direct 4D printing via active composite materials[J]. Sci. Adv., 2017,3(4). doi: 10.1126/sciadv.1602890

    37. [37]

      Mao Y., Ding Z., Yuan C., Ai S., Isakov M., Wu J., Wang T., Dunn M. L., Qi H. J.. 3D printed reversible shape changing components with stimuli responsive materials[J]. Sci. Rep., 2016,6. doi: 10.1038/srep24761

    38. [38]

      Zarek M., Layani M., Cooperstein I., Sachyani E., Cohn D., Magdassi S.. 3D printing of shape memory polymers for flexible electronic devices[J]. Adv. Mater., 2016,28(22):4449-4454. doi: 10.1002/adma.v28.22

    39. [39]

      Zarek M., Mansour N., Shapira S., Cohn D.. 4D printing of shape memory-based personalized endoluminal medical devices[J]. Macromol. Rapid Commun., 2017,38(2). doi: 10.1002/marc.201600628

    40. [40]

      Zarek M., Layani M., Eliazar S., Mansour N., Cooperstein I., Shukrun E., Szlar A., Cohn D., Magdassi S.. 4D printing shape memory polymers for dynamic jewellery and fashionwear[J]. Virtual. Phys. Prototyp., 2016,11(4):263-270. doi: 10.1080/17452759.2016.1244085

    41. [41]

      Miao S., Zhu W., Castro N. J., Nowicki M., Zhou X., Cui H., Fisher J. P., Zhang L. G.. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate[J]. Sci. Rep., 2016,6. doi: 10.1038/srep27226

    42. [42]

      Yu K., Dunn M. L., Qi H. J.. Digital manufacture of shape changing components[J]. Extreme. Mech. Lett., 2015,4:9-17. doi: 10.1016/j.eml.2015.07.005

    43. [43]

      Huang L. M., Jiang R. Q., Wu J. J., Song J. Z., Bai H., Li B. G., Zhao Q., Xie T.. Ultrafast digital printing toward 4D shape changing materials[J]. Adv. Mater., 2017,29(7). doi: 10.1002/adma.201605390

    44. [44]

      Yang H., Leow W. R., Wang T., Wang J., Yu J., He K., Qi D., Wan C., Chen X.. 3D printed photoresponsive devices based on shape memory composites[J]. Adv. Mater., 2017. doi: 10.1002/adma.201701627

    45. [45]

      Yang K., Grant J. C., Lamey P., Joshi-Imre A., Lund B. R., Smaldone R. A., Voit W.. Diels-alder reversible thermoset 3D printing:isotropic thermoset polymers via fused filament fabrication[J]. Adv. Funct. Mater., 2017. doi: 10.1002/adfm.201700318

    46. [46]

      Wei H., Zhang Q., Yao Y., Liu L., Liu Y., Leng J.. Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite[J]. ACS Appl. Mater. Interfaces, 2017,9(1):876-883. doi: 10.1021/acsami.6b12824

    47. [47]

      Gladman A. S., Matsumoto E. A., Nuzzo R. G., Mahadevan L., Lewis J. A.. Biomimetic 4D printing[J]. Nat. Mater., 2016,15(4):413-418. doi: 10.1038/nmat4544

    48. [48]

      Zhang Q., Yan D., Zhang K., Hu G.. Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique[J]. Sci. Rep., 2015,5. doi: 10.1038/srep08936

    49. [49]

      Zhang Q., Zhang K., Hu G.. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique[J]. Sci. Rep., 2016,6. doi: 10.1038/srep22431

    50. [50]

      Zhao Z., Wu J., Mu X., Chen H., Qi H. J., Fang D.. Origami by frontal photopolymerization[J]. Sci. Adv., 2017,3(4). doi: 10.1126/sciadv.1602326

    51. [51]

      Sokol, Z., The U. S. Army is investing in 4D printing, expect craziness like self-altering camo. https://creators.vice.com/en_us/article/yp5m8x/the-us-army-is-investing-in-4d-printing-expect-crazy-results.

    52. [52]

      Kuribayashi K., Tsuchiya K., You Z., Tomus D., Umemoto M., Ito T., Sasaki M.. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil[J]. Sci. Eng. A Struct. Mater., 2006,419(1-2):131-137. doi: 10.1016/j.msea.2005.12.016

    53. [53]

      Wache H. M., Tartakowska D. J., Hentrich A., Wagner M. H.. Development of a polymer stent with shape memory effect as a drug delivery system[J]. J. Mater. Sci. Mater. Med., 2003,14(2):109-112. doi: 10.1023/A:1022007510352

  • 加载中
    1. [1]

      Mengchen Liu Yufei Zhang Yi Xiao Yang Wei Meichen Bi Huaide Jiang Yan Yu Shenghong Zhong . High stretchability and toughness of liquid metal reinforced conductive biocompatible hydrogels for flexible strain sensors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100518-100518. doi: 10.1016/j.cjsc.2025.100518

    2. [2]

      Xi ChenXue ZhangShuai YangJie WangTian TangMaling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021

    3. [3]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    4. [4]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    5. [5]

      Xiaoyu HouMingyang LiuHu WuNan WangXu ZhaoXifeng QinXiaomin SuHanwei HuangZihan MaJiahao LiuOnder ErgonulFüsun CanWei LiuZhiqing PangFunan Liu . Differential releasing hydrogel loaded with oncolytic viruses and anti-CAFs drug to enhance oncology therapeutic efficacy. Chinese Chemical Letters, 2025, 36(5): 110106-. doi: 10.1016/j.cclet.2024.110106

    6. [6]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    7. [7]

      Yang XuLe MaYang WangChunmeng Shi . Engineering strategies of biomaterial-assisted exosomes for skin wound repair: Latest advances and challenges. Chinese Chemical Letters, 2025, 36(1): 109766-. doi: 10.1016/j.cclet.2024.109766

    8. [8]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

    9. [9]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    10. [10]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    11. [11]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    12. [12]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    13. [13]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    14. [14]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    15. [15]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    16. [16]

      Renyuan WangLei KeHouxiang WangYueheng TaoYujie CuiPeipei ZhangMinjie ShiXingbin Yan . Facile synthesis of phenazine-conjugated polymer material with extraordinary proton-storage redox capability. Chinese Chemical Letters, 2025, 36(5): 109920-. doi: 10.1016/j.cclet.2024.109920

    17. [17]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    18. [18]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    19. [19]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    20. [20]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

Metrics
  • PDF Downloads(0)
  • Abstract views(1238)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return