Citation: Li-Jun Ye, Jie-Qing Shen, Kang-Yuan Xie, Zhi-Xiang Li, Yong-Jin Li. Replicated Banded Spherulite: Microscopic Lamellar-assembly of Poly(L-lactic acid) Crystals in the Poly(oxymethylene) Crystal Framework[J]. Chinese Journal of Polymer Science, ;2018, 36(3): 385-390. doi: 10.1007/s10118-018-2085-z shu

Replicated Banded Spherulite: Microscopic Lamellar-assembly of Poly(L-lactic acid) Crystals in the Poly(oxymethylene) Crystal Framework

  • Corresponding author: Yong-Jin Li, yongjin-li@hznu.edu.cn
  • Received Date: 26 September 2017
    Accepted Date: 2 November 2017
    Available Online: 4 December 2017

  • The morphologies of poly(L-lactic acid) (PLLA) spherulites, when crystallized within the pre-existed poly(oxymethylene) (POM) crystal frameworks, have been investigated. PLLA/POM blend is a melt-miscible crystalline/crystalline blend system. Owing to the lower melting point but much faster crystallization rate than PLLA, POM crystallized first upon cooling from the melt state and then melted first during the subsequent heating process in this blend system. Lamellar assembly of PLLA crystals within the pre-existed POM spherulitic frameworks was directly observed with the polarized light microscopy by selectively melting the POM frameworks. The investigation indicated that PLLA crystals fully replicated the spherulitic morphology and optical birefringence of the POM crystal frameworks, which was independent of Tc. On the other hand, POM could also duplicate the pre-existed PLLA morphologies. The result obtained provides us a possibility to design the lamellar assembly and crystal structures of polymer crystals in miscible crystalline/crystalline polymer blends.
  • 加载中
    1. [1]

      Shtukenberg A. G., Punin Y. O., Gunn E., Kahr B.. Spherulites[J]. Chem. Rev., 2012,112(3):1805-1838. doi: 10.1021/cr200297f

    2. [2]

      Shtukenberg A. G., Punin Y. O., Gujral A., Kahr B.. Growth actuated bending and twisting of single crystals[J]. Angew. Chem. Int. Ed., 2014,53(3):672-699. doi: 10.1002/anie.201301223

    3. [3]

      Crist B., Schultz J. M.. Polymer spherulites:a critical review[J]. Prog. Polym. Sci., 2016,56:1-63. doi: 10.1016/j.progpolymsci.2015.11.006

    4. [4]

      Schultz J. M.. The crystallization and morphology of melt-miscible polymer blends[J]. Front. Chem. China, 2010,5(3):262-276. doi: 10.1007/s11458-010-0211-8

    5. [5]

      Zhang Y., Fang H., Wang Z., Tang M., Wang Z.. Disclosing the formation of ring-banded spherulites for semicrystalline polymers through the double-layer film method[J]. CrystEng Comm, 2014,16(6):1026-1037. doi: 10.1039/C3CE42083C

    6. [6]

      Wang Z., An L., Jiang W., Jiang B., Wang X.. Ring-banded spherulite surface structure of poly(ε-caprolactone) in its miscible mixtures with poly(styrene-co-acrylonitrile)[J]. J. Polym. Sci., Part B:Polym. Phys., 1999,37(18):2682-2691. doi: 10.1002/(ISSN)1099-0488

    7. [7]

      Wang Z., Wang X., Yu D., Jiang B.. The Formation of ring-banded spherulites of poly(ε-caprolactone) in its miscible mixtures with poly(styrene-co-acrylonitrile)[J]. Polymer, 1997,38(23):5897-5901. doi: 10.1016/S0032-3861(97)00225-5

    8. [8]

      Balijepalli S., Schultz J. M.. Modeling of crystallization in a blend containing at least one crystallizable component:an analogy from eutectic systems[J]. Macromolecules, 2006,39(21):7407-7414. doi: 10.1021/ma060097v

    9. [9]

      Blümm E., Owen A. J.. Miscibility, crystallization and melting of poly(3-hydroxybutyrate)/poly(L-lactide) blends[J]. Polymer, 1995,36(21):4077-4081. doi: 10.1016/0032-3861(95)90987-D

    10. [10]

      Hirano S., Nishikawa Y., Terada Y., Ikehara T., Nishi T.. Miscibility and crystallization behavior of crystalline/crystalline polymer blends[J]. poly(ester carbonate)/poly(L-lactic acid). Polym. J., 2002,34(2):85-88.  

    11. [11]

      Ikehara T., Kimura H., Qiu Z. B.. Penetrating spherulitic growth in poly(butylene adipate-co-butylene succinate)/poly(ethylene oxide) blends[J]. Macromolecules, 2005,38(12):5104-5108. doi: 10.1021/ma0502809

    12. [12]

      Ikehara T., Nishi T.. Interpenetrated spherulites of poly(butylene succinate)/poly(vinylidene chloride-co-vinyl chloride) blends[J]. an optical microscopic study. Polym. J., 2000,32(8):683-687.  

    13. [13]

      Ikehara T., Nishikawa Y., Nishi T.. Evidence for the formation of interpenetrated spherulites in poly(butylene succinate-co-butylene carbonate)/poly(L-lactic acid) blends investigated by atomic force microscopy[J]. Polymer, 2003,44(21):6657-6661. doi: 10.1016/S0032-3861(03)00685-2

    14. [14]

      Lu J. M., Qiu Z. B., Yang W. T.. Effects of blend composition and crystallization temperature on unique crystalline morphologies of miscible poly(ethylene succinate)/poly(ethylene oxide) blends[J]. Macromolecules, 2008,41(1):141-148. doi: 10.1021/ma7020997

    15. [15]

      Qiu Z. B., Ikehara T., Nishi T.. Unique morphology of poly(ethylene succinate)/poly(ethylene oxide) blends[J]. Macromolecules, 2002,35(22):8251-8254. doi: 10.1021/ma025599x

    16. [16]

      Zeng J. B., Zhu Q. Y., Li Y. D., Qiu Z. C., Wang Y. Z.. Unique crystalline/crystalline polymer blends of poly(ethylene succinate) and poly(p-dioxanone):miscibility and crystallization behaviors[J]. J. Phys. Chem. B, 2010,114(46):14827-14833. doi: 10.1021/jp104709z

    17. [17]

      Weng M. T., Qiu Z. B.. A spherulitic morphology study of crystalline/crystalline polymer blends of poly(ethylene succinate-co-9.9 mol% ethylene adipate) and poly(ethylene oxide)[J]. Macromolecules, 2013,46(21):8744-8747. doi: 10.1021/ma4017086

    18. [18]

      Ikehara T., Kurihara H., Kataoka T.. Effect of poly(butylene succinate) crystals on spherulitic growth of poly(ethylene oxide) in binary blends of the two substances[J]. J. Polym. Sci., Part B:Polym. Phys., 2009,47(5):539-547. doi: 10.1002/polb.v47:5

    19. [19]

      Ikehara T., Kurihara H., Qiu Z. B., Nishi T.. Study of spherulitic structures by analyzing the spherulitic growth rate of the other component in binary crystalline polymer blends[J]. Macromolecules, 2007,40(24):8726-8730. doi: 10.1021/ma070973k

    20. [20]

      Qiu Z. B., Yan C. Z., Lu J. M., Yang W. T.. Miscible crystalline/crystalline polymer blends of poly(vinylidene fluoride) and poly(butylene succinate-co-butylene adipate):spherulitic morphologies and crystallization kinetics[J]. Macromolecules, 2007,40(14):5047-5053. doi: 10.1021/ma070255y

    21. [21]

      Wang H., Gan Z., Schultz J. M., Yan S.. A morphological study of poly(butylene succinate)/poly(butylene adipate) blends with different blend ratios and crystallization processes[J]. Polymer, 2008,49(9):2342-2353. doi: 10.1016/j.polymer.2008.02.050

    22. [22]

      Wang T. C., Li H. H., Wang F., Schultz J. M., Yan S. K.. Morphologies and deformation behavior of poly(vinylidene fluoride)/poly(butylene succinate) blends with variety of blend ratios and under different preparation conditions[J]. Polym. Chem., 2011,2(8):1688-1698. doi: 10.1039/c1py00134e

    23. [23]

      Wang T., Li H., Wang F., Yan S., Schultz J. M.. Confined growth of poly(butylene succinate) in its miscible blends with poly(vinylidene fluoride):morphology and growth kinetics[J]. J. Phys. Chem. B, 2011,115(24):7814-7822. doi: 10.1021/jp203680e

    24. [24]

      Liu J., Jungnickel B. J.. Crystallization kinetical and morphological peculiarities in binary crystalline/crystalline polymer blends[J]. J. Polym. Sci., Part B:Polym. Phys., 2007,45(15):1917-1931. doi: 10.1002/(ISSN)1099-0488

    25. [25]

      Weng M. T., Qiu Z. B.. Unusual fractional crystallization behavior of novel crystalline/crystalline polymer blends of poly(ethylene suberate) and poly(ethylene oxide) with similar melting points[J]. Macromolecules, 2014,47(23):8351-8358. doi: 10.1021/ma502019x

    26. [26]

      Ye L. J., Qiu J. S., Wu T., Shi X. C., Li Y. J.. Banded spherulite templated three-dimensional interpenetrated nanoporous materials[J]. RSC Adv., 2014,4(82):43351-43356. doi: 10.1039/C4RA06943A

    27. [27]

      Ye L., Shi X., Ye C., Chen Z., Zeng M., You J., Li Y.. Crystallization-modulated nanoporous polymeric materials with hierarchical patterned surfaces and 3d interpenetrated internal channels[J]. ACS Appl. Mater. Interfaces, 2015,7(12):6946-6954. doi: 10.1021/acsami.5b00848

    28. [28]

      Ye L., Ye C., Xie K., Shi X., You J., Li Y.. Morphologies and crystallization behaviors in melt-miscible crystalline/crystalline blends with close melting temperatures but different crystallization kinetics[J]. Macromolecules, 2015,48(23):8515-8525. doi: 10.1021/acs.macromol.5b01904

    29. [29]

      Yang J. J., Pan P. J., Hua L., Zhu B., Dong T., Inoue Y.. Polymorphic crystallization and phase transition of poly(butylene adipate) in its miscible crystalline/crystalline blend with poly(vinylidene fluoride)[J]. Macromolecules, 2010,43(20):8610-8618. doi: 10.1021/ma1015566

    30. [30]

      Qiu Z. B., Yan C. Z., Lu J. M., Yang W. T., Ikehara T., Nishi T.. Various crystalline morphology of poly(butylene succinate-co-butylene adipate) in its miscible blends with poly(vinylidene fluoride)[J]. J. Phys. Chem. B, 2007,111(11):2783-2789. doi: 10.1021/jp067606f

    31. [31]

      He Z., Liang Y., Han C. C.. Confined nucleation and growth of poly(ethylene oxide) on the different crystalline morphology of poly(butylene succinate) from a miscible blend[J]. Macromolecules, 2013,46(20):8264-8274. doi: 10.1021/ma4015214

    32. [32]

      Pan P., Zhao L., Inoue Y.. Fractional crystallization kinetics of poly(ethylene oxide) in its blends with poly(butylene succinate):molecular weight effects[J]. Macromol. Mater. Eng., 2013,298(8):919-927. doi: 10.1002/mame.v298.8

    33. [33]

      Pan P., Zhao L., Yang J., Inoue Y.. Fractional crystallization and phase segregation in binary miscible poly(butylene succinate)/poly(ethylene oxide) crystalline blends:effect of crystallization temperature[J]. Macromol. Mater. Eng., 2013,298(2):201-209. doi: 10.1002/mame.v298.2

    34. [34]

      He Y., Zhu B., Kai W. H., Inoue Y.. Nanoscale-confined and fractional crystallization of poly(ethylene oxide) in the interlamellar region of poly(butylene succinate)[J]. Macromolecules, 2004,37(9):3337-3345. doi: 10.1021/ma035886g

    35. [35]

      He Y., Zhu B., Kai W. H., Inoue Y.. Effects of crystallization condition of poly(butylene succinate) component on the crystallization of poly(ethylene oxide) component in their miscible blends[J]. Macromolecules, 2004,37(21):8050-8056. doi: 10.1021/ma049482f

    36. [36]

      Schultz J. M.. Self-generated fields and polymer crystallization[J]. Macromolecules, 2012,45(16):6299-6323. doi: 10.1021/ma202476t

    37. [37]

      Woo E. M., Lugito G., Tsai J. H., Muller A. J.. Hierarchically diminishing chirality effects on lamellar assembly in spherulites comprising chiral polymers[J]. Macromolecules, 2016,49(7):2698-2708. doi: 10.1021/acs.macromol.6b00350

    38. [38]

      Qiu J. S., Xing C. Y., Cao X. J., Wang H. T., Wang L., Zhao L. P., Li Y. J.. Miscibility and double glass transition temperature depression of poly(L-lactic acid) (PLLA)/poly(oxymethylene) (POM) blends[J]. Macromolecules, 2013,46(14):5806-5814. doi: 10.1021/ma401084y

    39. [39]

      Keller A.. The Spherulitic structure of crystalline polymers[J]. Part I. investigations with the polarizing microscope. J. Polym. Sci., 1955,17(84):291-308.  

    40. [40]

      Point J. J.. Spiral winding in the spherulites of polyethylene[J]. Bull. Acad. R. Belg., 1955,41:982-990.  

    41. [41]

      Padden F. J., Keith H. D.. Spherulitic crystallization in polypropylene[J]. J. Appl. Phys., 1959,30(10):1479-1484. doi: 10.1063/1.1734985

    42. [42]

      Price F. P.. On extinction patterns of polymer spherulites[J]. J. Polym. Sci., 1959,39(135):139-150. doi: 10.1002/pol.1959.1203913511

    43. [43]

      Keith H. D., Padden F. J.. A phenomenological theory of spherulitic crystallization[J]. J. Appl. Phys., 1963,34(8):2409-2421. doi: 10.1063/1.1702757

    44. [44]

      Keith H. D., Padden F. J., Russell T. P.. Morphological changes in polyesters and polyamides induced by blending with small concentrations of polymer diluents[J]. Macromolecules, 1989,22(2):666-675. doi: 10.1021/ma00192a027

    45. [45]

      Lotz B., Cheng S. Z. D.. A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals[J]. Polymer, 2005,46(3):577-610. doi: 10.1016/j.polymer.2004.07.042

    46. [46]

      Okano K.. Note on the lamellar twist is polymer spherulites[J]. Jpn. J. Appl. Phys., 1964,3:351-353. doi: 10.1143/JJAP.3.351

    47. [47]

      Michell R. M., Müller A. J.. Confined crystallization of polymeric materials[J]. Prog. Polym. Sci., 2016:54-213.  

  • 加载中
    1. [1]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    2. [2]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    3. [3]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    4. [4]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    5. [5]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    6. [6]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    7. [7]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    8. [8]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    9. [9]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    10. [10]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    11. [11]

      Shuxin LiuJinjuan MaAiguo WangNan Zheng . Decomposable and sono-enzyme co-triggered poly(sonosensitizers) for precise and hypotoxic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110032-. doi: 10.1016/j.cclet.2024.110032

    12. [12]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    13. [13]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    14. [14]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    15. [15]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    16. [16]

      Xuan SongTeng FuYajie YangYahan KuangXiuli WangYu-Zhong Wang . Spatial-confinement combustion strategy enabling free radicals chemiluminescence direct-measurement in flame-retardant mechanism. Chinese Chemical Letters, 2025, 36(5): 110699-. doi: 10.1016/j.cclet.2024.110699

    17. [17]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    18. [18]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    19. [19]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    20. [20]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

Metrics
  • PDF Downloads(0)
  • Abstract views(845)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return