Citation: Miao-Jun Xu, Si-Yu Xia, Chuan Liu, Bin Li. Preparation of Poly(phosphoric acid piperazine) and Its Application as an Effective Flame Retardant for Epoxy Resin[J]. Chinese Journal of Polymer Science, ;2018, 36(5): 655-664. doi: 10.1007/s10118-018-2036-8 shu

Preparation of Poly(phosphoric acid piperazine) and Its Application as an Effective Flame Retardant for Epoxy Resin

  • Corresponding author: Bin Li, libinzh62@163.com
  • Received Date: 3 August 2017
    Accepted Date: 6 September 2017
    Available Online: 18 January 2018

  • A phosphorus-nitrogen containing flame retardant additive of poly(phosphoric acid piperazine), defined as PPAP, was synthesized by the salt-forming reaction between anhydrous piperazine and phosphoric acid, and the dehydration polymerization under heating in nitrogen atmosphere. Its chemical structure was well characterized by Fourier transform infrared (FTIR) spectroscopy, 13C and 31P solid-state nuclear magnetic resonance measurements. The synthesized PPAP and curing agent m-phenylenediamine were blended into epoxy resin (EP) to prepare flame retardant EP thermosets. The effects of PPAP on the fire retardancy and thermal degradation behavior of cured EP/PPAP composites were investigated by limiting oxygen index (LOI), vertical burning (UL-94), thermogravimetric analysis/infrared spectrometry (TG-IR) and cone calorimeter tests. The morphologies and chemical compositions of char residues for cured epoxy resin were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The results demonstrated that the flame retardant EP thermosets successfully passed UL-94 Ⅴ-0 flammability rating and the LOI value was as high as 30.8% when incorporating 5wt% PPAP into the EP thermosets. The TGA results indicated that the synthesized PPAP flame retardant additive possessed high thermal stability and excellent charring capability. Meanwhile, the incorporation of PPAP stimulated the epoxy resin matrix to decompose and charring ahead of time due to its catalytic decomposition effect, which led to a higher char yield at high temperature. The morphological structures and the analysis results of XPS for char residues of EP thermosets revealed that the introduction of PPAP benefited the formation of a sufficient, more compact and homogeneous char layer containing phosphorus-nitrogen flame retardant elements on the material surface during combustion. The formed char layer with high quality effectively prevented the heat transmission and diffusion, limited the production of combustible gases, and inhibited the emission of smoke, leading to the reduction of heat and smoke release.
  • 加载中
    1. [1]

      Wang X., Song L., Xing W. Y., Lu H. D., Hu Y.. An effective flame retardant for epoxy resins based on poly(DOPO substituted dihydroxyl phenyl pentaerythritol diphosphonate)[J]. Mater. Chem. Phys., 2011,125(3):536-541. doi: 10.1016/j.matchemphys.2010.10.020

    2. [2]

      Chen Z. K., Yang G., Yang J. P., Fu S. Y., Ye L., Huang Y. G.. Simultaneously increasing cryogenic strength, ductility and impact resistance of epoxy resins modified by n-butyl glycidyl ether[J]. Polymer, 2009,50(5):1316-1323. doi: 10.1016/j.polymer.2008.12.048

    3. [3]

      Toldy A., Szabó A., Novák C., Madarász J., Tóth A., Marosi G.. MarosiIntrinsically flame retardant epoxy resin-fire performance and background-Part Ⅱ[J]. Polym. Degrad. Stab., 2008,93(11):2007-2013. doi: 10.1016/j.polymdegradstab.2008.02.011

    4. [4]

      Gao M., Wu W. H., Xu Z. Q.. Thermal degradation behaviors and flame retardancy of epoxy resins with novel silicon-containing flame retardant[J]. J. Appl. Polym. Sci., 2013,127(3):1842-1847. doi: 10.1002/app.37909

    5. [5]

      Kandola B. K., Biswas B., Price D., Horrocks A. R.. Studies on the effect of different levels of toughener and flame retardants on thermal stability of epoxy resin[J]. Polym. Degrad. Stab., 2010,95(2):144-153. doi: 10.1016/j.polymdegradstab.2009.11.040

    6. [6]

      Levchik S. V., Weil E. D.. A review of recent progress in phosphorus-based flame retardants[J]. J. Fire Sci., 2006,24(5):345-364. doi: 10.1177/0734904106068426

    7. [7]

      Lin H. T., Lin C. H., Hu Y. M., Su W. C.. An approach to develop high-Tg epoxy resins for halogen-freecopper clad laminates[J]. Polymer, 2009,50(24):5685-5692. doi: 10.1016/j.polymer.2009.09.075

    8. [8]

      Braun U., Balabanovich A. I., Schartel B., Knoll U., Artner J., Ciesielski M., Hoffmann T.. Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites[J]. Polymer, 2006,47:8495-8508. doi: 10.1016/j.polymer.2006.10.022

    9. [9]

      Ren H., Sun J. Z., Wu B. J., Zhou Q. Y.. Synthesis and properties of a phosphorus-containing flame retardant epoxy resin based on bis-phenoxy(3-hydroxy) phenyl phosphine oxide[J]. Polym. Degrad. Stab., 2007,92(6):956-961. doi: 10.1016/j.polymdegradstab.2007.03.006

    10. [10]

      Li Y., Zheng H. B., Xu M. J., Li B., Lai T.. Synthesis of a novel phosphonate flame retardant and its application in epoxy resins[J]. J. Appl. Polym. Sci., 2015,132(45):13085-13094.  

    11. [11]

      Xu M. J., Xu G. R., Leng Y., Li B.. Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins[J]. Polym. Degrad. Stab., 2016,123:105-114. doi: 10.1016/j.polymdegradstab.2015.11.018

    12. [12]

      Xu M. J., Zhao W., Li B.. Synthesis of a novel curing agent containing organophosphorus and its application in flame-retarded epoxy resins[J]. J. Appl. Polym. Sci., 2014,131(23):12406-12417.  

    13. [13]

      Martin C., Lligadas G., Ronda J. C., Galia M., Cadiz V.. Synthesis of novel boron-containing epoxy-novolac resins and properties of cured products[J]. J. Polym. Sci., Part A:Polym. Chem., 2006,44(21):6332-6344. doi: 10.1002/(ISSN)1099-0518

    14. [14]

      Dogan M., Unlu S. M.. Flame retardant effect of boron compounds on red phosphorus containing epoxy resins[J]. Polym. Degrad. Stab., 2014,99:12-17. doi: 10.1016/j.polymdegradstab.2013.12.017

    15. [15]

      Zhang T., Liu W., Wang M., Liu P., Pan Y., Liu D.. Synthesis of a boron/nitrogen-containing compound based on triazine and boronic acid and its flame retardant effect on epoxy resin[J]. High Perform. Polym., 2016. doi: 10.1177/0954008316650929

    16. [16]

      Unlu S. M., Dogan S. D., Dogan M.. Comparative study of boron compounds and aluminum trihydroxide as flame retardant additives in epoxy resin[J]. Polym. Adv. Technol., 2014,25(8):769-776. doi: 10.1002/pat.3274

    17. [17]

      Canadell J., Mantecon A., Cadiz V.. Copolymerization of a silicon-containing spiroorthoester with a phosphorus-containing diglycidyl compound:influence on flame retardancy and shrinkage[J]. Polym. Degrad. Stab., 2007,92(10):1934-1941. doi: 10.1016/j.polymdegradstab.2007.06.019

    18. [18]

      Mercado L. A., Galia M., Reina J. A.. Silicon-containing flame retardant epoxy resins:synthesis, characterization and properties[J]. Polym. Degrad. Stab., 2006,91(11):2588-2594. doi: 10.1016/j.polymdegradstab.2006.05.007

    19. [19]

      Song S., Ma J., Cao K., Chang G., Huang Y., Yang J.. Synthesis of a novel dicyclic silicon-/phosphorus hybrid and its performance on flame retardancy of epoxy resin[J]. Polym. Degrad. Stab., 2014,99:43-52. doi: 10.1016/j.polymdegradstab.2013.12.013

    20. [20]

      Qian X., Song L., Bihe Y., Yu B., Shi Y., Hu Y., Yuen R. K.. Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon:preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system[J]. Mater. Chem. Phys., 2014,143(3):1243-1252. doi: 10.1016/j.matchemphys.2013.11.029

    21. [21]

      Wang S., Xin F., Chen Y., Qian L., Chen Y.. Phosphorus-nitrogen containing polymer wrapped carbon nanotubes and their flame-retardant effect on epoxy resin[J]. Polym. Degrad. Stab., 2016,129:133-141. doi: 10.1016/j.polymdegradstab.2016.04.011

    22. [22]

      Zhang X. H., Liu F., Chen S., Qi G. R.. Novel flame retardant thermosets from nitrogen-containing and phosphorus-containing epoxy resins cured with dicyandiamide[J]. J. Appl. Polym. Sci., 2007,106(4):2391-2397. doi: 10.1002/(ISSN)1097-4628

    23. [23]

      Gu L., Chen G., Yao Y.. Two novel phosphorus-nitrogen-containing halogen-free flame retardants of high performance for epoxy resin[J]. Polym. Degrad. Stab., 2014,108:68-75. doi: 10.1016/j.polymdegradstab.2014.05.030

    24. [24]

      Artner J., Ciesielski M., Walter O., Doring M., Perez R. M., Sandler J. K. W., Altstadt V., Schartel B.. A novel DOPO-based diamine as hardener and flame retardant for epoxy resin systems[J]. Macromol. Mater. Eng., 2008,293(6):503-514. doi: 10.1002/(ISSN)1439-2054

    25. [25]

      Alcon M. J., Ribera G., Galia M., Cadiz V.. Advanced flame retardant epoxy resins from phosphorus-containing diol[J]. J. Polym. Sci., Part A:Polym. Chem., 2005,43:3510-3515. doi: 10.1002/(ISSN)1099-0518

    26. [26]

      Lu S. Y., Hamerton I.. Recent developments in the chemistry of halogen-free flame retardant polymers[J]. Prog. Polym. Sci., 2002,27:1661-1712. doi: 10.1016/S0079-6700(02)00018-7

    27. [27]

      Duquesne S., Lefebvre J., Seeley G., Camino G., Delobel R., Lebras M.. Vinyl acetate/butyl acrylate copolymers:Part 2:fire retardancy using phosphorus-containing additives and monomers[J]. Polym. Degrad. Stab., 2004,85(2):883-892. doi: 10.1016/j.polymdegradstab.2004.04.004

    28. [28]

      Perret B., Schartel B., Stöß K., Ciesielski M., Diederichs J., Döring M., Krämer J., Altstädt V.. A new halogen-free flame retardant based on 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide for epoxy resins and their carbon fiber composites for the automotive and aviation industries[J]. Macromol. Mater. Eng., 2011,296:14-30. doi: 10.1002/mame.v296.1

    29. [29]

      Yang S., Wang J., Huo S., Wang M., Tang Y.. Synthesis of a phosphorus/nitrogen-containing compound based on maleimide and cyclotriphosphazene and its flame-retardant mechanism on epoxy resin[J]. Polym. Degrad. Stab., 2016,126:9-16. doi: 10.1016/j.polymdegradstab.2016.01.011

    30. [30]

      Yang S., Wang J., Huo S., Wang M.. Preparation and flame retardancy of a compounded epoxy resin system composed of phosphorus/nitrogen-containing active compounds[J]. Polym. Degrad. Stab., 2015,121:398-406. doi: 10.1016/j.polymdegradstab.2015.10.006

    31. [31]

      Gao M., Yang S. S.. A novel intumescent flame-retardant epoxy resins system[J]. J. Appl. Polym. Sci., 2010,113(4):2346-2351.  

    32. [32]

      Xu M. J., Ma Y., Hou M. J., Li B.. Synthesis of a cross-linked triazine phosphine polymer and its effect on fire retardancy, thermal degradation and moisture resistance of epoxy resins[J]. Polym. Degrad. Stab., 2015,119:14-22. doi: 10.1016/j.polymdegradstab.2015.04.027

    33. [33]

      Yang K., Xu M. J., Li B.. Synthesis of N-ethyl triazine-piperazine copolymer and flame retardancy and water resistance of intumescent flame retardant polypropylene[J]. Polym. Degrad. Stab., 2013,98(7):1397-1406. doi: 10.1016/j.polymdegradstab.2013.03.023

    34. [34]

      Tan Y., Shao Z. B., Yu L. X., Long J. W., Qi M., Chen L., Wang Y. Z.. Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin:flame retardance, curing behavior and mechanical property[J]. Polym. Chem., 2016,7(17):3003-3012. doi: 10.1039/C6PY00434B

    35. [35]

      Nguyen T. M., Chang S. C., Condon B., Thomas T. P., Azadi P.. Thermal decomposition reactions of cotton fabric treated with piperazine-phosphonates derivatives as a flame retardant[J]. J. Anal. Appl. Pyrolysis., 2014,110:122-129. doi: 10.1016/j.jaap.2014.08.006

    36. [36]

      Gao M., Wo Y. Q., Wu W. H.. Microencapsulation of intumescent flame-retardant agent and application to epoxy resins[J]. J. Appl. Polym. Sci., 2011,119:2025-2030. doi: 10.1002/app.32930

    37. [37]

      Gao L. P., Wang D. Y., Wang Y. Z.. A flame-retardant epoxy resin based on a reactive phosphorus-containing monomer of DODPP and its thermal and flame-retardant properties[J]. Polym. Degrad. Stab., 2008,93(7):1308-1315. doi: 10.1016/j.polymdegradstab.2008.04.004

    38. [38]

      Zhang W., Li X., Yang R. J.. Pyrolysis and fire behaviour of epoxy resin composites based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS)[J]. Polym. Degrad. Stab., 2011,96(10):1821-1832. doi: 10.1016/j.polymdegradstab.2011.07.014

    39. [39]

      Yang S., Wang J., Huo S. Q., Wang M., Zhang B.. Synergistic flame-retardant effect of expandable graphite and phosphorus-containing compounds for epoxy resin:strong bonding of different carbon residues[J]. Polym. Degrad. Stab., 2016,128:89-98. doi: 10.1016/j.polymdegradstab.2016.03.017

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    3. [3]

      Xuan SongTeng FuYajie YangYahan KuangXiuli WangYu-Zhong Wang . Spatial-confinement combustion strategy enabling free radicals chemiluminescence direct-measurement in flame-retardant mechanism. Chinese Chemical Letters, 2025, 36(5): 110699-. doi: 10.1016/j.cclet.2024.110699

    4. [4]

      Caiyun Jin Zexuan Wu Guopeng Li Zhan Luo Nian-Wu Li . 用于金属锂电池的磷腈基阻燃人工界面层. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-. doi: 10.1016/j.actphy.2025.100094

    5. [5]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    6. [6]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    7. [7]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    8. [8]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    9. [9]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    10. [10]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    11. [11]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    12. [12]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    13. [13]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    14. [14]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    15. [15]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    16. [16]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    17. [17]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    18. [18]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    19. [19]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    20. [20]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

Metrics
  • PDF Downloads(0)
  • Abstract views(1081)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return