Citation: Si-hua Guo, Fang-yuan Zheng, Fang Zeng, Shui-zhu Wu. Temperature-responsive Behavior of Polymer Fluorescent System via Electrostatic Interaction Mediated Aggregation/Deaggregation[J]. Chinese Journal of Polymer Science, ;2016, 34(7): 830-837. doi: 10.1007/s10118-016-1793-5 shu

Temperature-responsive Behavior of Polymer Fluorescent System via Electrostatic Interaction Mediated Aggregation/Deaggregation

  • Corresponding author: Shui-zhu Wu, shzhwu@scut.edu.cn
  • Received Date: 4 January 2016
    Revised Date: 1 February 2016
    Accepted Date: 1 February 2016

    Fund Project: was financially supported by the Science and Technology Planning Project of Guangdong Province 2014A010105009National Key Basic Research Program of China 2013CB834702National Natural Science Foundation of China 21474031National Natural Science Foundation of China 21574044Fundamental Research Funds for the Central Universities 2015ZY013

  • A simple and effective polymer fluorescent thermosensitive system was successfully developed based on the synergistic effect of excimer/monomer interconversion of pyrene derivatives and electrostatic interaction between polyelectrolyte and charged fluorophore. As for the system, the excimer-monomer conversion, thermosensitive behavior and thermo-responsive reversibility were investigated experimentally. Temperature variation and temperature-distribution induced fluorescence changes can be observed directly by naked eyes. Thus, this polymer system holds promise for serving as a fluorescent thermometer.
  • 加载中
    1. [1]

      Yang, Z.G., Cao, J.F., He, Y.X., Yang, J.H., Kim, T., Peng, X.J. and Kim, J.S., Chem. Soc. Rev., 2014, 43: 4563

    2. [2]

      Wang, Z.Y., Ma, X.Q., Zong, S.F., Wang, Y.Z., Chen, H. and Cui, Y.P., Talanta, 2015, 131: 259

    3. [3]

      Pais, V.F., Lassaletta, J.M., Fernandez, R., El-Sheshtawy, H.S., Ros, A. and Pischel, U., Chem. Eur. J., 2014, 20: 7638

    4. [4]

      Feng, J., Xiong, L., Wang, S.Q., Li, S.Y., Li, Y. and Yang, G.Q., Adv. Funct. Mater., 2013, 23: 340

    5. [5]

      Ozawa, A., Shimizu, A., Nishiyabu, R. and Kubo, Y., Chem. Commun., 2015, 51: 118

    6. [6]

      Baker, G.A., Baker, S.N. and McCleskey, T.M., Chem. Commun., 2003, 23: 2932

    7. [7]

      Hang, Y.D., He, X.P., Yang, L. and Hua, J.L., Biosens. Bioelectron., 2015, 65: 420

    8. [8]

      Ji, X.F., Wang, P., Wang, H. and Huang, F.H., Chinese J. Polym. Sci., 2015, 33(6): 890

    9. [9]

      Zhang, X.Q., Zhang, X.Y., Yang, B. and Wei, Y., Chinese J. Polym. Sci., 2014, 32(11): 1479

    10. [10]

      Huang, Y.F., Ou, D.X., Wang, C., Huang, C., Li, Q.Q. and Li, Z., Polym. Chem., 2014, 5: 2041

    11. [11]

      Qiu, T., Chen, Y., Song, J. and Fan, L.J., ACS Appl. Mater. Interfaces, 2015, 7: 8260

    12. [12]

      Xu, X.Q., Miao, K.S., Chen, Y. and Fan, L.J., ACS Appl. Mater. Interfaces, 2015, 7: 7759

    13. [13]

      Gao, Y.T., Feng, G.X., Jiang, T., Goh, C.C., Ng, L.G., Liu, B., Li, B., Yang, L., Hua, J.L., and Tian, H., Adv. Funct. Mater., 2015, 25: 2857

    14. [14]

      Huang, J., Sun, N., Yang, J., Tang, R.L., Li, Q.Q., Ma, D.G. and Li, Z., Adv. Funct. Mater. 2014, 24, 7645

    15. [15]

      Lee, J. and Kotov, N.A., Nano Today, 2007, 2(1): 48

    16. [16]

      Li, J., Jiang, Y.B., Cheng, J., Zhang, Y.L., Su, H.M., Lam, J.W.Y., Sung, H.H.Y., Wong, K.S., Kwok, H.S. and Tang, B.Z., Phys. Chem. Chem. Phys., 2015: 17, 1134

    17. [17]

      Ebrahimi, S., Akhlaghi, Y., Kompany-Zareh, M. and Rinnan, A., ACS Nano, 2014, 8(10): 10372

    18. [18]

      Wang, X.D., Meier, R.J., Schmittlein, C., Schreml, S., Schaferling, M. and Wolfbeis, O.S., Sensor. Actuat. B-Chem., 2015, 221: 37

    19. [19]

      Liu, G.F., Zhou, W., Zhang, J.Q. and Zhao, P., J. Polym. Sci., Part A: Polym. Chem., 2012, 50: 2219

    20. [20]

      Liu, Y., Ma, C., Zeng, F. and Wu, S.Z., Acta Polymerica Sinica (in Chinese), 2012, (6): 666

    21. [21]

      Uchiyama, S., Matsumura, Y., de Silva, A.P. and Iwai, K., Anal. Chem., 2004, 76: 1793

    22. [22]

      Tsuji, T., Yoshida, S., Yoshida, A. and Uchiyama, S., Anal. Chem., 2013, 85: 9815

    23. [23]

      Jiang, Y.N., Yang, X.D., Ma, C., Wang, C.X., Chen, Y., Dong, F.X., Yang, B., Yu, K. and Lin, Q., ACS Appl. Mater. Interfaces, 2014, 6: 4650

    24. [24]

      Wang, X., Guo, X.H., Zhu, Y., Li, L., Wu, S. and Zhang, R., Chinese J. Polym. Sci., 2011, 29(4): 490

    25. [25]

      Qiao, J., Chen, C.F., Qi, L., Liu, M.R., Dong, P., Jiang, Q., Yang, X.Z., Mu, X.Y. and Mao, L.Q., J. Mater. Chem. B, 2014, 2: 7544

    26. [26]

      Lee, S., Lee, J.S., Lee, C.H., Jung, Y.S. and Kim, J.M., Langmuir, 2011, 27(5): 1560

    27. [27]

      Feng, J., Tian, K.J., Hu, D.H., Wang, S.Q., Li, S.Y., Zeng, Y., Li, Y. and Yang, G.Q., Angew. Chem. Int. Ed., 2011, 50: 8072

    28. [28]

      Wang, H., Wu, Y.Q., Shi, Y.L., Tao, P., Fan, X., Su, X.Y. and Kuang, G.C., Chem. Eur. J., 2015, 21: 3219

    29. [29]

      Liu, X., Li, S.Y., Feng, J., Li, Y. and Yang, G.Q., Chem. Commun., 2014, 50: 2778

    30. [30]

      Cao, C., Liu, X.G., Qiao, Q.L., Zhao, M., Yin, W.T., Mao, D.Q., Zhang, H. and Xu, Z.C., Chem. Commun., 2014, 50: 15811

    31. [31]

      Liu, L.X., Li, W., Yan, J.T. and Zhang, A.F., J. Polym. Sci., Part A: Polym. Chem., 2014, 52: 1706

    32. [32]

      Chen, Y.P. and Li, X.D., Biomacromolecules, 2011, 12: 4367

    33. [33]

      Wang, C.Y., Tong, Z., Zeng, F., Ren, B.Y. and Liu, X.X., Acta Polymerica Sinica (in Chinese), 2002, (6): 729

    34. [34]

      Wang, C.Y., Sun, Q.L., Tong, Z., Liu, X.X., Zeng, F. and Gao, F., Acta Polymerica Sinica (in Chinese), 2011, (7): 1265

    35. [35]

      Hong, S.W., Kim, D.Y., Lee, J.U. and Jo, W.H., Macromolecules, 2009, 42(7): 2009

    36. [36]

      Zhang, Q.E., Deng, T., Li, J.S., Xu, W.J., Shen, G.L. and Yu, R.Q., Biosens. Bioelectron., 2015, 68: 253

    37. [37]

      Bibi, I. and Siddiq, M., Chinese J. Polym. Sci., 2011, 29(5): 575

    38. [38]

      Qiao, J.J., Zhang, X.H. and Wu, S.K., Acta Polymerica Sinica (in Chinese), 2006, (1): 76

    39. [39]

      Zhegalova, N.G., Dergunov, S.A., Wang, S.T., Pinkhassik, E. and Berezin, M.Y., Chem. Eur. J., 2014, 20: 10292

    40. [40]

      Takei, Y., Arai, S., Murata, A., Takabayashi, M., Oyama, K., Ishiwata, S., Takeoka, S. and Suzuki, M., ACS Nano, 2014, 8(1): 198

    41. [41]

      Wu, Y.X., Zhang, X.B., Li, J.B., Zhang, C.C., Liang, H., Mao, G.J., Zhou, L.Y., Tan, W.H., Yu, R.Q., Anal. Chem., 2014, 86: 10389

    42. [42]

      Wang, F., Nandhakumar, R., Moon, J.H., Kim, K.M., Lee, J.Y. and Yoon, J., Inorg. Chem., 2011, 50: 2240

    43. [43]

      Chen, H., Lin, W.Y., Jiang, W.Q., Dong, B.L., Cui, H.J. and Tang, Y.H., Chem. Commun., 2015, 51: 6968

    44. [44]

      Williams, A.T.R., Winfield, S.A. and Miller, J.N., Analyst, 1983, 108: 1067

    45. [45]

      Demas, J.N. and Crosby, G.A., J. Phys. Chem., 1971, 75 (8): 991

    46. [46]

      Broadbent, A.D., Color Res. Appl., 2004, 29(4): 26

  • 加载中
    1. [1]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    2. [2]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    3. [3]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    4. [4]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    5. [5]

      Wen SuSiying LiuQingfu ZhangZhongyan ZhouNa WangLei Yue . Temperature-controlled electrospray ionization tandem mass spectrometry study on protein/small molecule interaction. Chinese Chemical Letters, 2025, 36(5): 110237-. doi: 10.1016/j.cclet.2024.110237

    6. [6]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    7. [7]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    8. [8]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    9. [9]

      Zeyin ChenJiaju ShiYusheng ZhouPeng ZhangGuodong Liang . Polymer microparticles with ultralong room-temperature phosphorescence for visual and quantitative detection of oxygen through phosphorescence image and lifetime analysis. Chinese Chemical Letters, 2025, 36(5): 110629-. doi: 10.1016/j.cclet.2024.110629

    10. [10]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    11. [11]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    12. [12]

      Jiayin ZhouDepeng LiuLongqiang LiMin QiGuangqiang YinTao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929

    13. [13]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    14. [14]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    15. [15]

      Jiayu ZengMinhui LiuTing YangJia HuangSongjiao LiWanting ZhangDan ChengLongwei HeJia Zhou . Two-dimensional design strategy to construct smart dual-responsive fluorescent probe for the precise tracking of ischemic stroke. Chinese Chemical Letters, 2025, 36(5): 110166-. doi: 10.1016/j.cclet.2024.110166

    16. [16]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    17. [17]

      Min LiuBin FengFeiyi ChuDuoyang FanFan ZhengFei ChenWenbin Zeng . An ESIPT-boosted NIR nanoprobe for ratiometric sensing of carbon monoxide via activatable aggregation-induced dual-color fluorescence. Chinese Chemical Letters, 2025, 36(5): 110043-. doi: 10.1016/j.cclet.2024.110043

    18. [18]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    19. [19]

      Yunli XuXuwen DaLei WangYatong PengWanpeng ZhouXiulian LiuYao WuWentao WangXuesong WangQianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168

    20. [20]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

Metrics
  • PDF Downloads(0)
  • Abstract views(865)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return