Citation:
Shu-ying Wang, Xu-dong Shi, Zhi-hua Gan, Feng Wang. Preparation of PLGA Microspheres with Different Porous Morphologies[J]. Chinese Journal of Polymer Science,
;2015, 33(1): 128-136.
doi:
10.1007/s10118-014-1507-9
-
Poly(D,L-lactide-co-glycolide) (PLGA) microspheres were prepared by emulsion solvent evaporation method. The influences of inner aqueous phase, organic solvent, PLGA concentration on the morphology of microspheres were studied. The results showed that addition of porogen or surfactants to the inner aqueous phase, types of organic solvents and polymer concentration affected greatly the microsphere morphology. When dichloromethane was adopted as organic solvent, microspheres with porous structure were produced. When ethyl acetate served as organic solvent, two different morphologies were obtained. One was hollow microspheres with thin porous shell under a lower PLGA concentration, another was erythrocyte-like microspheres under a higher PLGA concentration. Three types of microspheres including porous, hollow core with thin porous shell (denoted by hollow in brief) and solid structures were finally selected for in vitro drug release tests. Bovine serum albumin (BSA) was chosen as model drug and encapsulated within the microspheres. The BSA encapsulation efficiency of porous, hollow and solid microspheres was respectively 90.4%, 79.8% and 0. And the ultimate accumulative release was respectively 74.5%, 58.9% and 0. The release rate of porous microspheres was much slower than that of hollow microspheres. The experiment results indicated that microspheres with different porous structures showed great potentials in controlling drug release behavior.
-
Keywords:
- PLGA,
- Porous microsphere,
- Morphology,
- BSA,
- Tissue engineering
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[6]
-
[7]
-
[8]
-
[9]
-
[10]
-
[11]
-
[12]
-
[13]
-
[14]
-
[15]
-
[16]
-
[17]
-
[18]
-
[19]
-
[20]
-
[21]
-
[1]
-
-
-
[1]
Fereshte Hassanzadeh-Afruzi , Mina Azizi , Iman Zare , Ehsan Nazarzadeh Zare , Anwarul Hasan , Siavash Iravani , Pooyan Makvandi , Yi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564
-
[2]
Hongyi Li , Huiyun Wen , He Zhang , Jin Li , Xiang Cao , Jiaqing Zhang , Yutao Zheng , Saipeng Huang , Weiming Xue , Xiaojun Cai . Polymeric micelle-hydrogel composites design for biomedical applications. Chinese Chemical Letters, 2025, 36(5): 110072-. doi: 10.1016/j.cclet.2024.110072
-
[3]
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
-
[4]
Zhongjie Li , Xiangyue Kong , Yuhao Liu , Huayu Qiu , Lingling Zhan , Shouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378
-
[5]
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
-
[6]
Xin Lu , Haoran Sun , Xiaomeng Li , Chunrui Li , Jinfeng Wang , Dandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936
-
[7]
Xingqun Pu , Rongrong Liu , Yuting Xie , Chenjing Yang , Jingyi Chen , Baoling Guo , Chun-Xia Zhao , Peng Zhao , Jian Ruan , Fangfu Ye , David A Weitz , Dong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820
-
[8]
Shihong Wu , Ronghui Zhou , Hang Zhao , Peng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026
-
[9]
Shan Jiang , Lingchen Meng , Wenyue Ma , Qingkai Qi , Wei Zhang , Bin Xu , Leijing Liu , Wenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998
-
[10]
Yu-Qi Cao , Ying-Jie Lu , Li Zhang , Jing Zhang , Yin-Long Guo . Vacuum promoted on-tissue derivatization strategy: Unravelling spatial distribution of glycerides on tissue. Chinese Chemical Letters, 2024, 35(12): 109788-. doi: 10.1016/j.cclet.2024.109788
-
[11]
Yanqi Wu , Yuhong Guan , Peilin Huang , Hui Chen , Liping Bai , Zhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308
-
[12]
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
-
[13]
Xing Tian , Di Wu , Wanheng Wei , Guifu Dai , Zhanxian Li , Benhua Wang , Mingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912
-
[14]
Ran Wu , Dongxu Jiang , Hao Hu , Chenyu Yang , Liang Qin , Lulu Chen , Zehui Hu , Hualei Xu , Jinrong Li , Haiqiang Liu , Hua Guo , Jinxiang Fu , Qichen Hao , Yijun Zhou , Jinchao Feng , Qiang Wang , Xiaodong Wang . 4-Aminoazobenzene: A novel negative ion matrix for enhanced MALDI tissue imaging of metabolites. Chinese Chemical Letters, 2024, 35(11): 109624-. doi: 10.1016/j.cclet.2024.109624
-
[15]
Ziyi Zhu , Yang Cao , Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241
-
[16]
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
-
[17]
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
-
[18]
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
-
[19]
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
-
[20]
Guilong Li , Wenbo Ma , Jialing Zhou , Caiqin Wu , Chenling Yao , Huan Zeng , Jian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(850)
- HTML views(22)