Simultaneous Functionalization and Reduction of Graphene Oxide with Polyetheramine and Its Electrically Conductive Epoxy Nanocomposites

Gongqing Tang Zhi-Guo Jiang Xiaofeng Li Hao-Bin Zhang Zhong-Zhen Yu

Citation:  Gongqing Tang, Zhi-Guo Jiang, Xiaofeng Li, Hao-Bin Zhang, Zhong-Zhen Yu. Simultaneous Functionalization and Reduction of Graphene Oxide with Polyetheramine and Its Electrically Conductive Epoxy Nanocomposites[J]. Chinese Journal of Polymer Science, 2014, 32(8): 975-985. doi: 10.1007/s10118-014-1488-8 shu

Simultaneous Functionalization and Reduction of Graphene Oxide with Polyetheramine and Its Electrically Conductive Epoxy Nanocomposites

  • 基金项目:

    This work was financially supported by the National Natural Science Foundation of China (Nos. 51125010 and 51221002) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20100010110006).

摘要: Simultaneous functionalization and reduction of graphene oxide (GO) is realized by refluxing of GO suspension with polyetheramine (D2000) followed by thermal treatment at 120℃. Compared to GO, the D2000-treated GO (GO-D2000) becomes hydrophobic, thermally stable and highly conductive with an electrical conductivity of 11 S/m, which is almost 8 orders of magnitude higher than that of GO. Due to the high conductivity and improved dispersion of GO-D2000, its epoxy nanocomposites exhibit a sharp transition from electrically insulating to conducting with a low percolation threshold of 0.71 vol%. With 3.6 wt% GO-D2000, the glass transition temperature of the epoxy nanocomposite is 27 K higher than that of neat epoxy.

English


    1. [1]

      Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A., Science, 2004, 306(5696): 666

    2. [2]

      Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. and Ruoff, R.S., Adv. Mater., 2010, 22(35): 3906

    3. [3]

      Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S. and Govindaraj, A., Angew. Chem. Int. Ed., 2009, 48(42): 7752

    4. [4]

      Geim, A.K. and Novoselov, K.S., Nat. Mater., 2007, 6(3): 183

    5. [5]

      Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S., Nature, 2006, 442(7100): 282

    6. [6]

      Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I. and Seal, S., Prog. Mater. Sci., 2011, 56(8): 1178

    7. [7]

      Xu, Y.X., Hong, W.J., Bai, H., Li, C. and Shi, G.Q., Carbon, 2009, 47(15): 3538

    8. [8]

      Huang, L., Li, C., Yuan, W.J. and Shi, G.Q., Nanoscale, 2013, 5(9): 3780

    9. [9]

      Fang, M., Zhang, Z., Li, J., Zhang, H., Lu, H. and Yang, Y., J. Mater. Chem., 2010, 20(43): 9635

    10. [10]

      Tan, Y.Q., Song, Y.H. and Zheng, Q., Chinese J. Polym. Sci., 2013, 31(3): 399

    11. [11]

      Wang, Z., Tang, X.Z., Yu, Z.Z., Guo, P., Song, H.H. and Du. X.S., Chinese J. Polym. Sci., 2011, 29(3): 368

    12. [12]

      Zhang, H.B., Yan, Q., Zheng, W.G., He, Z. and Yu, Z.Z., ACS Appl. Mater. Interfaces 2011, 3(3): 918

    13. [13]

      Wang, B.J., Zhang, Y.J., Zhang, J.Q., Gou, Q.T., Wang, Z.B., Chen, P. and Gu, Q., Chinese J. Polym. Sci., 2013, 31(4): 670

    14. [14]

      Wang, G.S., Wei, Z.Y., Sang, L., Chen, G.Y., Zhang, W.X., Dong, Z.F. and Qi, M., Chinese J. Polym. Sci., 2013, 31(8): 1148

    15. [15]

      Wang, Y., Yang, R., Shi, Z., Zhang, L., Shi, D., Wang, E. and Zhang, G., ACS Nano, 2011, 5(5): 3645

    16. [16]

      Khan, U., May, P., O'Neill, A. and Coleman, J.N., Carbon, 2010, 48(14): 4035

    17. [17]

      Park, S. and Ruoff, R.S., Nat. Nanotechnol., 2009, 4(4): 217

    18. [18]

      Amarnath, C.A., Hong, C.E., Kim, N.H., Ku, B.C., Kuila, T. and Lee, J.H., Carbon, 2011, 49(11): 3497

    19. [19]

      Li, D., Muller, M.B., Gilje, S., Kaner, R.B. and Wallace, G.G., Nat. Nanotechnol., 2008, 3(2): 101

    20. [20]

      Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T. and Ruoff, R.S., Carbon, 2007, 45(7): 1558

    21. [21]

      Lee, L.J., Zeng, C., Cao, X., Han, X., Shen, J. and Xu, G., Compos. Sci. Technol., 2005, 65(1516): 2344

    22. [22]

      Si, Y. and Samulski, E.T., Nano Lett., 2008, 8(6): 1679

    23. [23]

      Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H. and Yao, J., J. Phys. Chem. C, 2008, 112(22): 8192

    24. [24]

      Wang, Y., Shi, Z. and Yin, J., ACS Appl. Mater. Interfaces, 2011, 3(4): 1127

    25. [25]

      Khanra, P., Kuila, T., Kim, N.H., Bae, S.H., Yu, D.S. and Lee, J.H., Chem. Eng. J., 2012, 183: 526

    26. [26]

      Xu, L.Q., Yang, W.J., Neoh, K.G., Kang, E.T. and Fu, G.D., Macromolecules, 2010, 43(20): 8336

    27. [27]

      Li, W., Tang, X.Z., Zhang, H.B., Jiang, Z.G., Yu, Z.Z., Du, X.S. and Mai, Y.W., Carbon, 2011, 49(14): 4724

    28. [28]

      Ma, H.L., Zhang, H.B., Hu, Q.H., Li, W.J., Jiang, Z.G., Yu, Z.Z. and Dasari, A., ACS Appl. Mater. Interfaces, 2012, 4(4): 1948

    29. [29]

      Lan, T. and Pinnavaia, T.J., Chem. Mater., 1994, 6(12): 2216

    30. [30]

      Ma, J., Meng, Q., Zaman, I., Zhu, S., Michelmore, A., Kawashima, N., Wang, C.H. and Kuan, H.C., Compos. Sci. Technol., 2014, 91: 82

    31. [31]

      Zeng, C.F., Tang, Z.H., Guo, B.C. and Zhang, L.Q., Phys. Chem. Chem. Phys., 2012, 14: 9838

    32. [32]

      Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Adamson, D.H., Prud'homme, R.K., Car, R., Saville, D.A. and Aksay, I.A., J. Phys. Chem. B, 2006, 110(17): 8535

    33. [33]

      Ma, H.L., Zhang, H.B., Hu, Q.H., Li, W.J., Jiang, Z.G., Yu, Z.Z. and Dasari, A., ACS Appl. Mater. Interfaces, 2012, 4(4): 1948

    34. [34]

      Zhou, T.N., Chen, F., Liu, K., Deng, H., Zhang, Q., Feng, J.W. and Fu, Q.A., Nanotechnology, 2011, 22: 045704

    35. [35]

      Zhang, D.D., Zu, S.Z. and Han, B.H., Carbon, 2009, 47: 2993

    36. [36]

      Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud'homme, R.K., Aksay, I.A. and Car, R., Nano Lett., 2007, 8(1): 36

    37. [37]

      Rafiee, M.A., Rafiee, J., Srivastava, I., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N., Small, 2010, 6(2): 179

    38. [38]

      Ramanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Herrera-Alonso, M., Piner, R.D., Adamson, D.H., Schniepp, H.C., Chen, X. and Ruoff, R.S., Nat. Nanotechnol., 2008, 3(6): 327

    39. [39]

      Lu, H. and Nutt, S., Macromolecules, 2003, 36(11): 4010

    40. [40]

      Koerner, H., Misra, D., Tan, A., Drummy, L., Mirau, P. and Vaia, R., Polymer, 2006, 47(10): 3426

    41. [41]

      Zaman, I., Phan, T.T., Kuan, H.C., Meng, Q., Bao, L.T., Youssf, O. and Ma, J., Polymer, 2011, 52(7): 1603

    42. [42]

      Bao, C., Guo, Y., Song, L., Kan, Y., Qian, X. and Hu, Y., J. Mater. Chem., 2011, 21(35): 13290

    43. [43]

      Zhang, H.B., Zheng, W.G., Yan, Q., Yang, Y., Lu, Z.H., Wang, J.W., Ji, G.Y. and Yu, Z.Z., Polymer, 2010, 51(5): 1191

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  930
  • HTML全文浏览量:  18
文章相关
  • 发布日期:  2014-08-05
  • 收稿日期:  2014-02-13
  • 修回日期:  2014-05-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章