Synthesis, Structure and Photophysical Properties of a Dinuclear Copper(I) Complex Based on Phosphino-pyridine and Diphosphine Mixed-ligands

Wen-Si YU Chun-Hua HUANG Xi-He HUANG

Citation:  Wen-Si YU, Chun-Hua HUANG, Xi-He HUANG. Synthesis, Structure and Photophysical Properties of a Dinuclear Copper(I) Complex Based on Phosphino-pyridine and Diphosphine Mixed-ligands[J]. Chinese Journal of Structural Chemistry, 2021, 40(2): 175-181. doi: 10.14102/j.cnki.0254–5861.2011–2788 shu

Synthesis, Structure and Photophysical Properties of a Dinuclear Copper(I) Complex Based on Phosphino-pyridine and Diphosphine Mixed-ligands

English


    1. [1]

      Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234–238. doi: 10.1038/nature11687

    2. [2]

      Bizzarri, C.; Spuling, E.; Knoll, D. M.; Volz, D.; Bräse, S. Sustainable metal complexes for organic light-emitting diodes (OLEDs). Coord. Chem. Rev. 2018, 373, 49–82. doi: 10.1016/j.ccr.2017.09.011

    3. [3]

      Yang, M.; Chen, X. L.; Lu, C. Z. Efficiently luminescent copper(I) iodide complexes with crystallization-induced emission enhancement (CIEE). Dalton Trans. 2019, 48, 10790–10794. doi: 10.1039/C9DT01910C

    4. [4]

      Fleetham, T.; Li, G.; Li, J. Phosphorescent Pt(Ⅱ) and Pd(Ⅱ) complexes for efficient, high-color-quality, and stable OLEDs. Adv. Mater. 2017, 29, 1601861. doi: 10.1002/adma.201601861

    5. [5]

      Wu, Y.; Tan, X.; Lv, A.; Yu, F.; Ma, H.; Shen, K.; Sun, Z.; Chen, F.; Chen, Z. K.; Hang, X. C. Triplet excited-state engineering of phosphorescent Pt(Ⅱ) complexes. J. Phys. Chem. Lett. 2019, 10, 5105–5110. doi: 10.1021/acs.jpclett.9b01685

    6. [6]

      Femoni, C.; Muzzioli, S.; Palazzi, A.; Stagni, S.; Zacchini, S.; Monti, F.; Accorsi, G.; Bolognesi, M.; Armaroli, N.; Massi, M.; Valenti, G.; Marcaccio, M. New tetrazole-based Cu(I) homo- and hetero-leptic complexes with various P^P ligands: synthesis, characterization, redox and photophysical properties. Dalton Trans. 2013, 42, 997–1010. doi: 10.1039/C2DT32056H

    7. [7]

      Yersin, H.; Rausch, A. F.; Czerwieniec, R.; Hofbeck, T.; Fischer, T. The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs. Coord. Chem. Rev. 2011, 255, 2622–2652. doi: 10.1016/j.ccr.2011.01.042

    8. [8]

      Deaton, J. C.; Switalski, S. C.; Kondakow, D. Y.; Young, R. H.; Pawlik, T. D.; Giesen, D. J.; Harkins, S. B.; Miller, A. J. M.; Mickenberg, S. F.; Peters, J. C. E-Type delayed fluorescence of a phosphine-supported Cu2(μ-NAr2)2 diamond core: harvesting singlet and triplet excitons in OLEDs. J. Am. Chem. Soc. 2010, 132, 9499–9508. doi: 10.1021/ja1004575

    9. [9]

      Hofbeck, T.; Monkowius, U.; Yersin, H. Highly efficient luminescence of Cu(I) compounds: thermally activated delayed fluorescence combined with short-lived phosphorescence. J. Am. Chem. Soc. 2015, 137, 399–404. doi: 10.1021/ja5109672

    10. [10]

      Czerwieniec, R.; Leitl, M. J.; Homeier, H. H. H.; Yersin, H. Cu(I) complexes-thermally activated delayed fluorescence. photophysical approach and material design. Coord. Chem. Rev. 2016, 325, 2–28. doi: 10.1016/j.ccr.2016.06.016

    11. [11]

      Mara, M. W.; Fransted, K. A.; Chen, L. X. Interplays of excited state structures and dynamics in copper(I) diimine complexes: implications and perspectives. Coord. Chem. Rev. 2015, 282, 2–18.

    12. [12]

      Jia, J. H.; Chen, X. L.; Liao, J. Z.; Liang, D.; Yang, M. X.; Yu, R.; Lu, C. Z. Highly luminescent copper(I) halide complexes chelated with a tetradentate ligand (PNNP): synthesis, structure, photophysical properties and theoretical studies. Dalton Trans. 2019, 48, 1418–1426. doi: 10.1039/C8DT03452D

    13. [13]

      Cuttell, D. G.; Kuang, S. M.; Fanwick, P. E.; McMillin, D. R.; Walton, R. A. Simple Cu(I) complexes with unprecedented excited-state lifetimes. J. Am. Chem. Soc. 2002, 124, 6–7. doi: 10.1021/ja012247h

    14. [14]

      Harkins, S. B.; Peters, J. C. A highly emissive Cu2N2 diamond core complex supported by a [PNP]-ligand. J. Am. Chem. Soc. 2005, 127, 2030–2031. doi: 10.1021/ja043092r

    15. [15]

      Schinabeck, A.; Rau, N.; Klein, M.; Sundermeyer, J.; Yersin, H. Deep blue emitting Cu(I) tripod complexes. Design of high quantum yield materials showing TADF-assisted phosphorescence. Dalton Trans. 2018, 47, 17067–17076. doi: 10.1039/C8DT04093A

    16. [16]

      Kubas, G. J. Inorg. Synth. 1990, 26, 68.

    17. [17]

      Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution. University of Göttigen, Germany 1997.

    18. [18]

      Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement. University of Göttigen, Germany 1997.

    19. [19]

      Kang, L.; Chen, J.; Teng, T.; Chen, X. L.; Yu, R.; Lu, C. Z. Experimental and theoretical studies of highly emissive dinuclear Cu(I) halide complexes with delayed fluorescence. Dalton Trans. 2015, 44, 11649–11659. doi: 10.1039/C5DT01292A

    20. [20]

      Huang, C. H.; Wen, M.; Wang, C. Y.; Lu, Y. F.; Huang, X. H.; Li, H. H.; Wu, S. T.; Zhuang, N. F.; Hu, X. L. A series of pure-blue-light emitting Cu(I) complexes with thermally activated delayed fluorescence: structural, photophysical, and computational studies. Dalton Trans. 2017, 46, 1413–1419. doi: 10.1039/C6DT03965K

    21. [21]

      Linfoot, C. L.; Leitl, M. J.; Richardson, P.; Rausch, A. F.; Chepelin, O.; White, F. J.; Yersin, H.; Robertson, N. Thermally activated delayed fluorescence (TADF) and enhancing photoluminescence quantum yields of [CuI(diimine)(diphosphine)]+ complexes-photophysical, structural, and computational studies. Inorg. Chem. 2014, 53, 10854–10861. doi: 10.1021/ic500889s

    22. [22]

      Nitsch, J.; Lacemon, F.; Lorbach, A.; Eichhorn, A.; Cisnetti, F.; Steffen, A. Cuprophilic interactions in highly luminescent dicopper(I)-NHC-picolyl complexes-fast phosphorescence or TADF? Chem. Commun. 2016, 52, 2932–2935. doi: 10.1039/C5CC09659F

    23. [23]

      Czerwieniec, R.; Leitl, M. J.; Homeier, H. H. H.; Yersin, H. Cu(I) complexes-thermally activated delayed fluorescence. Photophysical approach and material design. Coord. Chem. Rev. 2016, 325, 2–28. doi: 10.1016/j.ccr.2016.06.016

  • Figure 1  X-ray structure of the cationic Cu(I)-dinuclear structure of 1 with probability ellipsoids set to 30%

    Figure 2  a) Absorption spectra of 1 together with free dpppy and dppm ligands recorded in dichloromethane solution, andb) Solid state UV-Vis diffuse reflectance spectrum of 1 measured at room temperature

    Figure 3  Luminescence spectra of complex 1 in the solid state (λex = 365 nm) at 298 and 77 K

    Figure 4  Emission lifetime of complex 1 in solid state versus temperature

    Figure 5  a) Luminescence spectra of 1 measured in powder, doping PMMA thin film (20 wt%), and CH2Cl2 solution, andb) measured in PMMA thin film with different doped weight (λex = 365 nm) at room temperature

    Table 1.  Selected Bond Lengths (Å) and Angles (º) of Complex 1

    Bond Dist. Bond Dist.
    Cu(1)–P(1) 2.3172(15) Cu(1)–P(3) 2.3122(14)
    Cu(1)–P(4) 2.3057(15) Cu(1)–N(3) 2.027(5)
    Cu(2)–P(2) 2.2044(15) Cu(2)–N(1) 2.031(5)
    Cu(2)–N(2) 2.034(5) Cu(1)···Cu(2) 2.8739(9)
    Angle (º) Angle (º)
    P(1)–Cu(1)–P(3)
    P(3)–Cu(1)–P(4)
    P(3)–Cu(1)–N(3)
    P(2)–Cu(2)–N(1)
    N(1)–Cu(2)–N(2)
    114.03(5)
    111.99(5)
    98.93(14)
    127.58(13)
    103.10(19)
    P(1)–Cu(1)–P(4)
    P(1)–Cu(1)–N(3)
    P(4)–Cu(1)–N(3)
    P(2)–Cu(2)–N(2)
    123.26(5)
    102.21(14)
    101.58(14)
    124.09(14)
    下载: 导出CSV

    Table 2.  Emission Properties of 1 in the Solid State at 298 and 77 K, and the Fitting Parameters Based on Eq. (1)

    Emission properties Fitting parameters
    λmax (298 K) (nm) 488 ΔE(S1 – T1) (cm–1/eV) 812/0.10
    τ (298 K) (μs) 25.9 τT1 (μs) 130
    ΦPL (298K) (%) 57.3 τS1 (ns) 232
    λmax (77 K) (nm) 493
    τ (77 K) (μs) 130.1
    下载: 导出CSV

    Table 3.  Emission Properties of 1 in Different Environments at Ambient Temperature

    λmax (nm) ΦPL (%)
    Powders 488 57.3
    PMMA (10wt%)a 492 27.2
    PMMA (15wt%)a 494 33.4
    PMMA (20wt%)a 494 36.1
    CH2Cl2b 510 1.2
    a) Dopant concentrations in PMMA matrices are 10%, 15% and 20% weight, respectively
    b) The concentration in CH2CL2 solution is 1.0 × 10–5 mol/L
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  590
  • HTML全文浏览量:  11
文章相关
  • 发布日期:  2021-02-01
  • 收稿日期:  2020-02-26
  • 接受日期:  2020-04-14
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章