Green-synthesized, low-cost tetracyanodiazafluorene (TCAF) as electron injection material for organic light-emitting diodes

Bing Yang Jianfeng Zhao Zepeng Wang Zhenlin Yang Zongqiong Lin Yanni Zhang Jiewei Li Linghai Xie Zhongfu An Hongmei Zhang Jiena Weng Wei Huang

Citation:  Yang Bing, Zhao Jianfeng, Wang Zepeng, Yang Zhenlin, Lin Zongqiong, Zhang Yanni, Li Jiewei, Xie Linghai, An Zhongfu, Zhang Hongmei, Weng Jiena, Huang Wei. Green-synthesized, low-cost tetracyanodiazafluorene (TCAF) as electron injection material for organic light-emitting diodes[J]. Chinese Chemical Letters, 2019, 30(11): 1969-1973. doi: 10.1016/j.cclet.2019.08.054 shu

Green-synthesized, low-cost tetracyanodiazafluorene (TCAF) as electron injection material for organic light-emitting diodes

English


    1. [1]

      M. Schwarze, C. Gaul, R. Scholz, et al., Nat. Mater. 18 (2019) 242-248. doi: 10.1038/s41563-018-0277-0

    2. [2]

      B. Hu, C. An, M. Wagner, et al., J. Am. Chem. Soc. 141 (2019) 5130-5134. doi: 10.1021/jacs.9b01082

    3. [3]

      C. Wang, J. Zhang, G. Long, et al., Angew. Chem. Int. Ed 54 (2015) 6292-6296. doi: 10.1002/anie.201500972

    4. [4]

      W. Chen, Q. Zhang, J. Mater. Chem. C 5 (2017) 1275-1302. doi: 10.1039/C6TC05066B

    5. [5]

      X.P. Xu, G.J. Zhang, Y. Li, et al., Chin. Chem. Lett. 30 (2019) 809-825. doi: 10.1016/j.cclet.2019.02.030

    6. [6]

      Y. Lin, Y. Li, X. Zhan, Chem. Soc. Rev. 41 (2012) 4245-4272. doi: 10.1039/c2cs15313k

    7. [7]

      C.L. Wang, H.L. Dong, et al., Chem. Rev. 112 (2012) 2208-2267. doi: 10.1021/cr100380z

    8. [8]

      J.H. Dou, Y.Q. Zheng, Z.F. Yao, et al., Adv. Mater. 27 (2015) 8051-8055. doi: 10.1002/adma.201503803

    9. [9]

      C. Bronnbauer, A. Osvet, C.J. Brabec, et al., ACS Photonics 3 (2016) 1233-1239. doi: 10.1021/acsphotonics.6b00234

    10. [10]

      E.F. Gomez, A.J. Steckl, ACS Photonics 2 (2015) 439-445. doi: 10.1021/ph500481c

    11. [11]

      J. Liang, L. Li, X. Niu, et al., Nat. Photonics 7 (2013) 817-824. doi: 10.1038/nphoton.2013.242

    12. [12]

      J. Liu, D. Chen, X. Luan, et al., ACS Appl. Mater. Interfaces 9 (2017) 12647-12653. doi: 10.1021/acsami.7b00463

    13. [13]

      H. Niikura, F. Legare, R. Hasbani, et al., Nature 421 (2003) 826-829. doi: 10.1038/nature01430

    14. [14]

      Y.R. Sun, N.C. Giebink, H. Kanno, et al., Nature 440 (2006) 908-912. doi: 10.1038/nature04645

    15. [15]

      M.S. White, M. Kaltenbrunner, E.D. Glowacki, et al., Nat. Photonics 7 (2013) 811-816. doi: 10.1038/nphoton.2013.188

    16. [16]

      M. Segal, M. Singh, K. Rivoire, et al., Nat. Mater. 6 (2007) 374-378. doi: 10.1038/nmat1885

    17. [17]

      T. Earmme, S.A. Jenekhe, Adv. Funct. Mater. 22 (2012) 5126-5136. doi: 10.1002/adfm.201201366

    18. [18]

      Z.C. Wen, X.J. Ma, X.Y. Yang, et al., Chin. Chem. Lett. 30 (2019) 995-999. doi: 10.1016/j.cclet.2019.01.028

    19. [19]

      N. Wang, W.T. Yang, S.X. Li, et al., Chin. Chem. Lett. 30 (2019) 1277-1281. doi: 10.1016/j.cclet.2019.01.010

    20. [20]

      Z.Q. Gao, Z.H. Li, P.F. Xia, et al., Adv. Funct. Mater. 17 (2007) 3194-3199. doi: 10.1002/adfm.200700238

    21. [21]

      K.H. Kim, J.L. Liao, S.W. Lee, et al., Adv. Mater. 28 (2016) 2526-2532. doi: 10.1002/adma.201504451

    22. [22]

      K.S. Yook, S.E. Jang, S.O. Jeon, et al., Adv. Mater. 22 (2010) 4479-4483. doi: 10.1002/adma.201002034

    23. [23]

      M. Pfeiffer, S.R. Forrest, K. Leo, et al., Adv. Mater. 14 (2002) 1633-1636. doi: 10.1002/1521-4095(20021118)14:22<1633::AID-ADMA1633>3.0.CO;2-%23

    24. [24]

      J. Kido, T. Matsumoto, Appl. Phys. Lett. 73 (1998) 2866-2868. doi: 10.1063/1.122612

    25. [25]

      G.F. He, M. Pfeiffer, K. Leo, et al., Appl. Phys. Lett. 85 (2004) 3911-3913. doi: 10.1063/1.1812378

    26. [26]

      X. Guan, K. Zhang, F. Huang, et al., Adv. Funct. Mater. 22 (2012) 2846-2854. doi: 10.1002/adfm.201200199

    27. [27]

      J. Lee, Y. Park, D.Y. Kim, et al., Appl. Phys. Lett. 82 (2003) 173-175. doi: 10.1063/1.1537048

    28. [28]

      J.S. Huang, G. Li, E. Wu, et al., Adv. Mater. 18 (2006) 114-117. doi: 10.1002/adma.200501105

    29. [29]

      S. Lee, H. Shin, J.J. Kim, Adv. Mater. 26 (2014) 5864-5868. doi: 10.1002/adma.201400330

    30. [30]

      T.W. Lee, O.O. Park, L.M. Do, et al., J. Appl. Phys. 90 (2001) 2128-2134. doi: 10.1063/1.1391215

    31. [31]

      C. Duan, K. Zhang, X. Guan, et al., Chem. Sci. 4 (2013) 1298-1307. doi: 10.1039/c3sc22258f

    32. [32]

      J. Fang, B.H. Wallikewitz, F. Gao, et al., J. Am. Chem. Soc. 133 (2011) 683-685. doi: 10.1021/ja108541z

    33. [33]

      C.V. Hoven, A. Garcia, G.C. Bazan, et al., Adv. Mater. 20 (2008) 3793-3810. doi: 10.1002/adma.200800533

    34. [34]

      Z. Hu, K. Zhang, F. Huang, et al., Chem. Commun. 51 (2015) 5572-5585. doi: 10.1039/C4CC09433F

    35. [35]

      F. Huang, Y. Zhang, M.S. Liu, et al., Adv. Funct. Mater. 19 (2009) 2457-2466. doi: 10.1002/adfm.200801898

    36. [36]

      H. Ma, H.L. Yip, F. Huang, et al., Adv. Funct. Mater. 20 (2010) 1371-1388. doi: 10.1002/adfm.200902236

    37. [37]

      J. Park, R. Yang, C.V. Hoven, et al., Adv. Mater. 20 (2008) 2491-2496. doi: 10.1002/adma.200702995

    38. [38]

      S. Xiao, Q. Zhang, W. You, Adv. Mater. 29 (2017) 1601391.

    39. [39]

      G. Zhou, Y. Geng, Y. Cheng, et al., Appl. Phys. Lett. 89 (2006) 233501.

    40. [40]

      R. Yang, Y. Xu, X.D. Dang, et al., J. Am. Chem. Soc. 130 (2008) 3282-3283. doi: 10.1021/ja711068d

    41. [41]

      C.H. Wu, K.W. Tsai, W.J. Huang, et al., Adv. Mater. Inter. 3 (2016) 1500621.

    42. [42]

      H. Li, Y. Xu, C.V. Hoven, et al., J. Am. Chem. Soc. 131 (2009) 8903-8912. doi: 10.1021/ja9018836

    43. [43]

      D.G. Georgiadou, L.C. Palilis, M. Vasilopoulou, et al., J. Mater. Chem. 21 (2011) 9296-9301. doi: 10.1039/c0jm04567e

    44. [44]

      D.G. Georgiadou, M. Vasilopoulou, L.C. Palilis, et al., ACS Appl. Mater. Interfaces 5 (2013) 12346-12354. doi: 10.1021/am402991b

    45. [45]

      T. Chiba, Y.J. Pu, T. Ide, et al., ACS Appl. Mater. Interfaces 9 (2017) 18113-18119. doi: 10.1021/acsami.7b02658

    46. [46]

      S. Stolz, Y. Zhang, U. Lemmer, et al., ACS Appl. Mater. Interfaces 9 (2017) 2776-2785. doi: 10.1021/acsami.6b15062

    47. [47]

      M. Takada, T. Nagase, T. Kobayashi, et al., Org. Electron. 50 (2017) 290-295. doi: 10.1016/j.orgel.2017.07.049

    48. [48]

      K.W. Tsai, C.H. Wu, J.Y. Jan, et al., J. Mater. Chem. C 4 (2016) 8559-8564. doi: 10.1039/C6TC03051C

    49. [49]

      R. Grover, R. Srivastava, M.N. Kamalasanan, et al., J. Lumin. 146 (2014) 53-56. doi: 10.1016/j.jlumin.2013.09.004

    50. [50]

      C.A. Di, G. Yu, Y. Liu, et al., Appl. Phys. Lett. 90 (2007) 133508.

    51. [51]

      Y.K. Kim, J. Won Kim, Y. Park, Appl. Phys. Lett. 94 (2009) 063305.

    52. [52]

      K.S. Lee, L. Lim, S.H. Han, et al., Org. Electron. 15 (2014) 343-347. doi: 10.1016/j.orgel.2013.11.023

    53. [53]

      J. Niederhausen, P. Amsalem, J. Frisch, et al., Phys. Rev. B 84 (2011) 165302.

    54. [54]

      S.M. Park, Y.H. Kim, Y. Yi, et al., Appl. Phys. Lett. 97 (2010) 063308.

    55. [55]

      D.S. Acker, W.R. Hertler, J. Am. Chem. Soc. 84 (1962) 3370-3374. doi: 10.1021/ja00876a028

    56. [56]

      D. Dong, D. Fang, H.R. Li, et al., Chem.-Asian J. 12 (2017) 920-926. doi: 10.1002/asia.201700112

    57. [57]

      Z.Q. Lin, P.J. Sun, Y.Y. Tay, et al., ACS Nano 6 (2012) 5309-5319. doi: 10.1021/nn3011398

    58. [58]

      M. Mamada, C. Perez-Bolivar, P. Anzenbacher Jr., Org. Lett. 13 (2011) 4882-4885. doi: 10.1021/ol201973w

    59. [59]

      J.F. Zhao, L. Chen, P.J. Sun, et al., Tetrahedron 67 (2011) 1977-1982. doi: 10.1016/j.tet.2010.12.065

    60. [60]

      W.J. Li, B. Liu, Y. Qian, et al., Polym. Chem. 4 (2013) 1796-1802. doi: 10.1039/c2py20971c

    61. [61]

      Y. Yu, L.Y. Bian, J.G. Chen, et al., Adv. Sci. 5 (2018) 1800747.

    62. [62]

      G. Li, J.F. Zhao, S.F. Yang, et al., Chem.-Asian J. 13 (2018) 250-254. doi: 10.1002/asia.201701674

    63. [63]

      Q. Miao, Adv. Mater. 26 (2014) 5541-5549. doi: 10.1002/adma.201305497

    64. [64]

      U.H.F. Bunz, Acc. Chem. Res. 48 (2015) 1676-1686. doi: 10.1021/acs.accounts.5b00118

    65. [65]

      Y. Liu, X. Wu, Z. Xiao, et al., Appl. Surf. Sci. 413 (2017) 302-307. doi: 10.1016/j.apsusc.2017.04.038

    66. [66]

      C. Fan, L. Zhu, B. Jiang, et al., J. Phys. Chem. C 117 (2013) 19134-19141. doi: 10.1021/jp406220c

    67. [67]

      C. Adachi, M.A. Baldo, M.E. Thompson, et al., J. Appl. Phys. 90 (2001) 5048-5051. doi: 10.1063/1.1409582

    68. [68]

      Y. Dai, H. Zhang, Z. Zhang, et al., J. Mater. Chem. C 3 (2015) 6809-6814. doi: 10.1039/C4TC02875A

    69. [69]

      H. Glowatzki, B. Bröker, R.P. Blum, et al., Nano Lett. 8 (2008) 3825-3829. doi: 10.1021/nl8021797

    70. [70]

      Z. Bin, H. Guo, Z. Liu, et al., ACS Appl. Mater. Interfaces 10 (2018) 4882-4886. doi: 10.1021/acsami.7b17385

    71. [71]

      H.Y. Oh, J.W. Kim, Appl. Phy. Lett. 97 (2010) 063308.

    72. [72]

      W. Chen, Y. Zhou, L. Wang, et al., Adv. Mater. 30 (2018) 1800515.

    73. [73]

      W. Kaim, M. Moscherosch, Coord. Chem. Rev. 129 (1994) 157-193. doi: 10.1016/0010-8545(94)85020-8

    74. [74]

      R. Xu, Y. Guo, S.J. Shao, Chin. Chem. Lett. 17 (2006) 377-379.

  • Scheme 1  (a) The synthetic routes of DCAF and TCAF: (ⅰ) 1H-indene-1, 2, 3-trione, 2, 3-diaminomaleonitrile (DAMN), EtOH, refluxed, 10 h, 85.0% for DCAF; (ⅱ) DCAF, malononitrile, EtOH, refluxed, 10 h, 91.5% for TCAF; (ⅲ) 1, 2, 3-indantrione, DAMN, and EtOH, refluxed, 10 h; then malononitrile, refluxed, another 10 h. Packing modes of DCAF (b, d) and TCAF (c, e) in single crystals.

    Figure 1  (a) Cyclic voltammogram recorded for DCAF and TCAF; b) Wave functions for the HOMO and LUMO of DCAF and TCAF molecules, respectively; (c, d) Calculated electrostatic potentials of single molecule of DCAF and TCAF.

    Figure 2  (a) Schematic configuration of devices A and B; (b) Energy level diagrams of devices A and B; (c) molecule structures of organic materials in devices A and B; (d) JVL characteristics of devices A and B; (e) LEL characteristics of devices A and B; (f) PEL characteristics of devices A and B; (g) LV characteristics of DCAF/TCAF-based electrononly devices C and D.

    Figure 3  The (a) JVL characteristics of devices B, E, and F; (b) LEL characteristics of devices B, E, and F; (c) PEL characteristics of devices B, E, and F. * Means the curves of device B were presented for comparison.

    Figure 4  The (a) JVL characteristics of devices G, B, H and I; (b) LE-L characteristics of devices G, B, H, and I; (c) PEL characteristics of devices G, B, H and I. *Means the curves of device B were presented for comparison.

    Table 1.  Electrochemical and thermal characteristics of DCAF and TCAF.

    下载: 导出CSV

    Table 2.  Three groups of device characteristics: Ⅰ. Devices A and B with different CAFs as EIM; Ⅱ. Devices B, E, and F with different thicknesses of TCAF; Ⅲ. Devices G, B, H and I with different thicknesses of TPBi (30, 40, 50, and 60 nm).

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  1148
  • HTML全文浏览量:  31
文章相关
  • 发布日期:  2019-11-22
  • 收稿日期:  2019-06-05
  • 接受日期:  2019-08-29
  • 修回日期:  2019-07-29
  • 网络出版日期:  2019-11-07
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章